|
| 1 | +/** |
| 2 | + * 1. |
| 3 | + * Given three numbers x, y, and p, compute (xˆy) % p. (This is modular exponentiation.) |
| 4 | + * Here, x is the base, y is exponent, and p is the modulus. |
| 5 | + * Modular exponentiation is a type of exponentiation performed over a modulus, |
| 6 | + * which is useful in computer science and used in the field of public-key encryption algorithms |
| 7 | + * |
| 8 | + * @param base |
| 9 | + * @param exponent |
| 10 | + * @param modulus |
| 11 | + * @returns |
| 12 | + */ |
1 | 13 | function modularExponentiation(base: number, exponent: number, modulus: number): number {
|
2 | 14 | return Math.pow(base, exponent) % modulus;
|
3 | 15 | }
|
| 16 | + |
| 17 | +function modularExponentiation01(base: number, exponent: number, modulus: number): number { |
| 18 | + if (modulus == 1) return 0; |
| 19 | + |
| 20 | + let value = 1; |
| 21 | + |
| 22 | + for (let i = 0; i < exponent; i++) { |
| 23 | + value = (value * base) % modulus; |
| 24 | + } |
| 25 | + |
| 26 | + return value; |
| 27 | +} |
| 28 | + |
| 29 | +/** |
| 30 | + * 2. |
| 31 | + * Print all primes lass than n. |
| 32 | + * |
| 33 | + * Simply iterate from 0 to n and print any prime numbers where isPrime() evaluates to true. |
| 34 | + * |
| 35 | + */ |
| 36 | + |
| 37 | +function allPrimesLessThanN(n: number): void { |
| 38 | + for (let i = 0; i < n; i++) { |
| 39 | + if (isPrimeNumber(i)) { |
| 40 | + console.log(i); |
| 41 | + } |
| 42 | + } |
| 43 | +} // time complexity of O(n sqrt(n)) is run n times. |
| 44 | + |
| 45 | +function isPrimeNumber(number: number): boolean { |
| 46 | + if (number <= 1) return false; |
| 47 | + if (number <= 3) return true; |
| 48 | + |
| 49 | + // This is checked so that we can skip |
| 50 | + // middle five number in below loop |
| 51 | + |
| 52 | + for (let i = 5; i * i < number; i = i + 6) { |
| 53 | + if (number % i == 0 || number % (i + 2) == 0) { |
| 54 | + return false; |
| 55 | + } |
| 56 | + } |
| 57 | + |
| 58 | + return true; |
| 59 | +} // time complexity of O(sqrt(n)) is run n times. |
0 commit comments