-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathresnet18_vggm.py
159 lines (123 loc) · 5.39 KB
/
resnet18_vggm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math
import torch
import torch.nn as nn
from collections import OrderedDict
from torchvision.models.resnet import BasicBlock
from .base import Backbone
class SpatialCrossMapLRN(nn.Module):
def __init__(self, local_size=1, alpha=1.0, beta=0.75, k=1, ACROSS_CHANNELS=True):
super(SpatialCrossMapLRN, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if ACROSS_CHANNELS:
self.average=nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1,
padding=(int((local_size-1.0)/2), 0, 0))
else:
self.average=nn.AvgPool2d(kernel_size=local_size,
stride=1,
padding=int((local_size-1.0)/2))
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, x):
if self.ACROSS_CHANNELS:
div = x.pow(2).unsqueeze(1)
div = self.average(div).squeeze(1)
div = div.mul(self.alpha).add(self.k).pow(self.beta)
else:
div = x.pow(2)
div = self.average(div)
div = div.mul(self.alpha).add(self.k).pow(self.beta)
x = x.div(div)
return x
class ResNetVGGm1(Backbone):
def __init__(self, block, layers, output_layers, num_classes=1000, frozen_layers=()):
self.inplanes = 64
super(ResNetVGGm1, self).__init__(frozen_layers=frozen_layers)
self.output_layers = output_layers
self.vggmconv1 = nn.Conv2d(3,96,(7, 7),(2, 2), padding=3)
self.vgglrn = SpatialCrossMapLRN(5, 0.0005, 0.75, 2)
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# self.avgpool = nn.AvgPool2d(7, stride=1)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _add_output_and_check(self, name, x, outputs, output_layers):
if name in output_layers:
outputs[name] = x
return len(output_layers) == len(outputs)
def forward(self, x, output_layers=None):
outputs = OrderedDict()
if output_layers is None:
output_layers = self.output_layers
if 'vggconv1' in output_layers:
c1 = self.vgglrn(self.relu(self.vggmconv1(x)))
if self._add_output_and_check('vggconv1', c1, outputs, output_layers):
return outputs
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if self._add_output_and_check('conv1', x, outputs, output_layers):
return outputs
x = self.maxpool(x)
x = self.layer1(x)
if self._add_output_and_check('layer1', x, outputs, output_layers):
return outputs
x = self.layer2(x)
if self._add_output_and_check('layer2', x, outputs, output_layers):
return outputs
x = self.layer3(x)
if self._add_output_and_check('layer3', x, outputs, output_layers):
return outputs
x = self.layer4(x)
if self._add_output_and_check('layer4', x, outputs, output_layers):
return outputs
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
if self._add_output_and_check('fc', x, outputs, output_layers):
return outputs
if len(output_layers) == 1 and output_layers[0] == 'default':
return x
raise ValueError('output_layer is wrong.')
def resnet18_vggmconv1(output_layers=None, path=None, **kwargs):
"""Constructs a ResNet-18 model with first-layer VGGm features.
"""
if output_layers is None:
output_layers = ['default']
else:
for l in output_layers:
if l not in ['vggconv1', 'conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']:
raise ValueError('Unknown layer: {}'.format(l))
model = ResNetVGGm1(BasicBlock, [2, 2, 2, 2], output_layers, **kwargs)
if path is not None:
model.load_state_dict(torch.load(path), strict=False)
return model