-
Notifications
You must be signed in to change notification settings - Fork 607
/
Copy pathbase.py
48 lines (38 loc) · 1.59 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
class Backbone(nn.Module):
"""Base class for backbone networks. Handles freezing layers etc.
args:
frozen_layers - Name of layers to freeze. Either list of strings, 'none' or 'all'. Default: 'none'.
"""
def __init__(self, frozen_layers=()):
super().__init__()
if isinstance(frozen_layers, str):
if frozen_layers.lower() == 'none':
frozen_layers = ()
elif frozen_layers.lower() != 'all':
raise ValueError('Unknown option for frozen layers: \"{}\". Should be \"all\", \"none\" or list of layer names.'.format(frozen_layers))
self.frozen_layers = frozen_layers
self._is_frozen_nograd = False
def train(self, mode=True):
super().train(mode)
if mode == True:
self._set_frozen_to_eval()
if not self._is_frozen_nograd:
self._set_frozen_to_nograd()
self._is_frozen_nograd = True
return self
def _set_frozen_to_eval(self):
if isinstance(self.frozen_layers, str) and self.frozen_layers.lower() == 'all':
self.eval()
else:
for layer in self.frozen_layers:
getattr(self, layer).eval()
def _set_frozen_to_nograd(self):
if isinstance(self.frozen_layers, str) and self.frozen_layers.lower() == 'all':
for p in self.parameters():
p.requires_grad_(False)
else:
for layer in self.frozen_layers:
for p in getattr(self, layer).parameters():
p.requires_grad_(False)