-
Notifications
You must be signed in to change notification settings - Fork 607
/
Copy pathprocessing_utils.py
706 lines (528 loc) · 25 KB
/
processing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import torch
import math
import cv2 as cv
import random
import torch.nn.functional as F
from .bounding_box_utils import rect_to_rel, rel_to_rect
from pytracking import TensorList
def sample_target(im, target_bb, search_area_factor, output_sz=None, mask=None):
""" Extracts a square crop centered at target_bb box, of area search_area_factor^2 times target_bb area
args:
im - cv image
target_bb - target box [x, y, w, h]
search_area_factor - Ratio of crop size to target size
output_sz - (float) Size to which the extracted crop is resized (always square). If None, no resizing is done.
returns:
cv image - extracted crop
float - the factor by which the crop has been resized to make the crop size equal output_size
"""
x, y, w, h = target_bb.tolist()
# Crop image
crop_sz = math.ceil(math.sqrt(w * h) * search_area_factor)
if crop_sz < 1:
raise Exception('Too small bounding box.')
x1 = round(x + 0.5 * w - crop_sz * 0.5)
x2 = x1 + crop_sz
y1 = round(y + 0.5 * h - crop_sz * 0.5)
y2 = y1 + crop_sz
x1_pad = max(0, -x1)
x2_pad = max(x2 - im.shape[1] + 1, 0)
y1_pad = max(0, -y1)
y2_pad = max(y2 - im.shape[0] + 1, 0)
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
if mask is not None:
mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad]
# Pad
im_crop_padded = cv.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv.BORDER_REPLICATE)
if mask is not None:
mask_crop_padded = F.pad(mask_crop, pad=(x1_pad, x2_pad, y1_pad, y2_pad), mode='constant', value=0)
if output_sz is not None:
resize_factor = output_sz / crop_sz
im_crop_padded = cv.resize(im_crop_padded, (output_sz, output_sz))
if mask is None:
return im_crop_padded, resize_factor
mask_crop_padded = \
F.interpolate(mask_crop_padded[None, None], (output_sz, output_sz), mode='bilinear', align_corners=False)[0, 0]
return im_crop_padded, resize_factor, mask_crop_padded
else:
if mask is None:
return im_crop_padded, 1.0
return im_crop_padded, 1.0, mask_crop_padded
def transform_image_to_crop(box_in: torch.Tensor, box_extract: torch.Tensor, resize_factor: float,
crop_sz: torch.Tensor) -> torch.Tensor:
""" Transform the box co-ordinates from the original image co-ordinates to the co-ordinates of the cropped image
args:
box_in - the box for which the co-ordinates are to be transformed
box_extract - the box about which the image crop has been extracted.
resize_factor - the ratio between the original image scale and the scale of the image crop
crop_sz - size of the cropped image
returns:
torch.Tensor - transformed co-ordinates of box_in
"""
box_extract_center = box_extract[0:2] + 0.5 * box_extract[2:4]
box_in_center = box_in[0:2] + 0.5 * box_in[2:4]
box_out_center = (crop_sz - 1) / 2 + (box_in_center - box_extract_center) * resize_factor
box_out_wh = box_in[2:4] * resize_factor
box_out = torch.cat((box_out_center - 0.5 * box_out_wh, box_out_wh))
return box_out
def jittered_center_crop(frames, box_extract, box_gt, search_area_factor, output_sz, masks=None):
""" For each frame in frames, extracts a square crop centered at box_extract, of area search_area_factor^2
times box_extract area. The extracted crops are then resized to output_sz. Further, the co-ordinates of the box
box_gt are transformed to the image crop co-ordinates
args:
frames - list of frames
box_extract - list of boxes of same length as frames. The crops are extracted using anno_extract
box_gt - list of boxes of same length as frames. The co-ordinates of these boxes are transformed from
image co-ordinates to the crop co-ordinates
search_area_factor - The area of the extracted crop is search_area_factor^2 times box_extract area
output_sz - The size to which the extracted crops are resized
returns:
list - list of image crops
list - box_gt location in the crop co-ordinates
"""
if masks is None:
crops_resize_factors = [sample_target(f, a, search_area_factor, output_sz)
for f, a in zip(frames, box_extract)]
frames_crop, resize_factors = zip(*crops_resize_factors)
masks_crop = None
else:
crops_resize_factors = [sample_target(f, a, search_area_factor, output_sz, m)
for f, a, m in zip(frames, box_extract, masks)]
frames_crop, resize_factors, masks_crop = zip(*crops_resize_factors)
crop_sz = torch.Tensor([output_sz, output_sz])
# find the bb location in the crop
box_crop = [transform_image_to_crop(a_gt, a_ex, rf, crop_sz)
for a_gt, a_ex, rf in zip(box_gt, box_extract, resize_factors)]
return frames_crop, box_crop, masks_crop
def sample_target_adaptive(im, target_bb, search_area_factor, output_sz, mode: str = 'replicate',
max_scale_change=None, mask=None):
""" Extracts a crop centered at target_bb box, of area search_area_factor^2. If the crop area contains regions
outside the image, it is shifted so that the it is inside the image. Further, if the crop area exceeds the image
size, a smaller crop which fits the image is returned instead.
args:
im - Input numpy image to crop.
target_bb - target box [x, y, w, h]
search_area_factor - Ratio of crop size to target size
output_sz - (float) Size to which the extracted crop is resized (always square). If None, no resizing is done.
mode - If 'replicate', the boundary pixels are replicated in case the search region crop goes out of image.
If 'inside', the search region crop is shifted/shrunk to fit completely inside the image.
If 'inside_major', the search region crop is shifted/shrunk to fit completely inside one axis of the image.
max_scale_change - Maximum allowed scale change when performing the crop (only applicable for 'inside' and 'inside_major')
mask - Optional mask to apply the same crop.
returns:
numpy image - Extracted crop.
torch.Tensor - A bounding box denoting the cropped region in the image.
numpy mask - Cropped mask returned only if mask is not None.
"""
if max_scale_change is None:
max_scale_change = float('inf')
if isinstance(output_sz, (float, int)):
output_sz = (output_sz, output_sz)
output_sz = torch.Tensor(output_sz)
im_h = im.shape[0]
im_w = im.shape[1]
bbx, bby, bbw, bbh = target_bb.tolist()
# Crop image
crop_sz_x, crop_sz_y = (output_sz * (
target_bb[2:].prod() / output_sz.prod()).sqrt() * search_area_factor).ceil().long().tolist()
# Get new sample size if forced inside the image
if mode == 'inside' or mode == 'inside_major':
# Calculate rescaling factor if outside the image
rescale_factor = [crop_sz_x / im_w, crop_sz_y / im_h]
if mode == 'inside':
rescale_factor = max(rescale_factor)
elif mode == 'inside_major':
rescale_factor = min(rescale_factor)
rescale_factor = min(max(1, rescale_factor), max_scale_change)
crop_sz_x = math.floor(crop_sz_x / rescale_factor)
crop_sz_y = math.floor(crop_sz_y / rescale_factor)
if crop_sz_x < 1 or crop_sz_y < 1:
raise Exception('Too small bounding box.')
x1 = round(bbx + 0.5 * bbw - crop_sz_x * 0.5)
x2 = x1 + crop_sz_x
y1 = round(bby + 0.5 * bbh - crop_sz_y * 0.5)
y2 = y1 + crop_sz_y
# Move box inside image
shift_x = max(0, -x1) + min(0, im_w - x2)
x1 += shift_x
x2 += shift_x
shift_y = max(0, -y1) + min(0, im_h - y2)
y1 += shift_y
y2 += shift_y
out_x = (max(0, -x1) + max(0, x2 - im_w)) // 2
out_y = (max(0, -y1) + max(0, y2 - im_h)) // 2
shift_x = (-x1 - out_x) * (out_x > 0)
shift_y = (-y1 - out_y) * (out_y > 0)
x1 += shift_x
x2 += shift_x
y1 += shift_y
y2 += shift_y
x1_pad = max(0, -x1)
x2_pad = max(x2 - im.shape[1] + 1, 0)
y1_pad = max(0, -y1)
y2_pad = max(y2 - im.shape[0] + 1, 0)
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
if mask is not None:
mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad]
# Pad
im_crop_padded = cv.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv.BORDER_REPLICATE)
if mask is not None:
mask_crop_padded = F.pad(mask_crop, pad=(x1_pad, x2_pad, y1_pad, y2_pad), mode='constant', value=0)
# Resize image
im_out = cv.resize(im_crop_padded, tuple(output_sz.long().tolist()))
if mask is not None:
mask_out = \
F.interpolate(mask_crop_padded[None, None], tuple(output_sz.flip(0).long().tolist()), mode='nearest')[0, 0]
crop_box = torch.Tensor([x1, y1, x2 - x1, y2 - y1])
if mask is None:
return im_out, crop_box
else:
return im_out, crop_box, mask_out
def sample_target_from_crop_region(im, crop_box, output_sz):
""" Extracts a crop of the image according to the crop box with the specified output size.
args:
im - Input numpy image to crop.
crop_box - crop box [x, y, w, h]
output_sz - Size to which the extracted crop is resized (always square) or tuple.
returns:
numpy image - Extracted crop.
"""
if isinstance(output_sz, (float, int)):
output_sz = (output_sz, output_sz)
output_sz = torch.Tensor(output_sz)
crop_box = crop_box.int()
x1, y1, w1, h1 = crop_box.tolist()
x2 = x1 + w1
y2 = y1 + h1
x1_pad = max(0, -x1)
x2_pad = max(x2 - im.shape[1] + 1, 0)
y1_pad = max(0, -y1)
y2_pad = max(y2 - im.shape[0] + 1, 0)
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
# Pad
im_crop_padded = cv.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv.BORDER_REPLICATE)
# Resize image
im_out = cv.resize(im_crop_padded, tuple(output_sz.long().tolist()))
return im_out
def crop_and_resize(im, box, crop_bb, output_sz, mask=None):
if isinstance(output_sz, (float, int)):
output_sz = (output_sz, output_sz)
im_h = im.shape[0]
im_w = im.shape[1]
if crop_bb[2] < 1 or crop_bb[3] < 1:
raise Exception('Too small bounding box.')
x1 = crop_bb[0]
x2 = crop_bb[0] + crop_bb[2]
y1 = crop_bb[1]
y2 = crop_bb[1] + crop_bb[3]
x1_pad = max(0, -x1)
x2_pad = max(x2 - im.shape[1] + 1, 0)
y1_pad = max(0, -y1)
y2_pad = max(y2 - im.shape[0] + 1, 0)
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
if mask is not None:
mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad]
# Pad
im_crop_padded = cv.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv.BORDER_REPLICATE)
if mask is not None:
mask_crop_padded = F.pad(mask_crop, pad=(x1_pad, x2_pad, y1_pad, y2_pad), mode='constant', value=0)
# Resize image
im_out = cv.resize(im_crop_padded, output_sz)
if mask is not None:
mask_out = F.interpolate(mask_crop_padded[None, None], (output_sz[1], output_sz[0]), mode='nearest')[0, 0]
rescale_factor = output_sz[0] / crop_bb[2]
# Hack
if box is not None:
box_crop = box.clone()
box_crop[0] -= crop_bb[0]
box_crop[1] -= crop_bb[1]
box_crop *= rescale_factor
else:
box_crop = None
if mask is None:
return im_out, box_crop
else:
return im_out, box_crop, mask_out
def transform_box_to_crop(box: torch.Tensor, crop_box: torch.Tensor, crop_sz: torch.Tensor) -> torch.Tensor:
""" Transform the box co-ordinates from the original image co-ordinates to the co-ordinates of the cropped image
args:
box - the box for which the co-ordinates are to be transformed
crop_box - bounding box defining the crop in the original image
crop_sz - size of the cropped image
returns:
torch.Tensor - transformed co-ordinates of box_in
"""
box_out = box.clone()
box_out[:2] -= crop_box[:2]
scale_factor = crop_sz / crop_box[2:]
box_out[:2] *= scale_factor
box_out[2:] *= scale_factor
return box_out
def target_image_crop(frames, box_extract, box_gt, search_area_factor, output_sz, mode: str = 'replicate',
max_scale_change=None, masks=None):
""" For each frame in frames, extracts a square crop centered at box_extract, of area search_area_factor^2
times box_extract area. If the crop area contains regions outside the image, it is shifted / shrunk so that it
completely fits inside the image. The extracted crops are then resized to output_sz. Further, the co-ordinates of
the box box_gt are transformed to the image crop co-ordinates
args:
frames - list of frames
box_extract - list of boxes of same length as frames. The crops are extracted using anno_extract
box_gt - list of boxes of same length as frames. The co-ordinates of these boxes are transformed from
image co-ordinates to the crop co-ordinates
search_area_factor - The area of the extracted crop is search_area_factor^2 times box_extract area
output_sz - The size to which the extracted crops are resized
mode - If 'replicate', the boundary pixels are replicated in case the search region crop goes out of image.
If 'inside', the search region crop is shifted/shrunk to fit completely inside the image.
If 'inside_major', the search region crop is shifted/shrunk to fit completely inside one axis of the image.
max_scale_change - Maximum allowed scale change when performing the crop (only applicable for 'inside' and 'inside_major')
masks - Optional masks to apply the same crop.
returns:
list - list of image crops
list - box_gt location in the crop co-ordinates
"""
if isinstance(output_sz, (float, int)):
output_sz = (output_sz, output_sz)
if masks is None:
frame_crops_boxes = [sample_target_adaptive(f, a, search_area_factor, output_sz, mode, max_scale_change)
for f, a in zip(frames, box_extract)]
frames_crop, crop_boxes = zip(*frame_crops_boxes)
else:
frame_crops_boxes_masks = [
sample_target_adaptive(f, a, search_area_factor, output_sz, mode, max_scale_change, mask=m)
for f, a, m in zip(frames, box_extract, masks)]
frames_crop, crop_boxes, masks_crop = zip(*frame_crops_boxes_masks)
crop_sz = torch.Tensor(output_sz)
# find the bb location in the crop
box_crop = [transform_box_to_crop(bb_gt, crop_bb, crop_sz)
for bb_gt, crop_bb in zip(box_gt, crop_boxes)]
if masks is None:
return frames_crop, box_crop
else:
return frames_crop, box_crop, masks_crop
def iou(reference, proposals):
"""Compute the IoU between a reference box with multiple proposal boxes.
args:
reference - Tensor of shape (1, 4).
proposals - Tensor of shape (num_proposals, 4)
returns:
torch.Tensor - Tensor of shape (num_proposals,) containing IoU of reference box with each proposal box.
"""
# Intersection box
tl = torch.max(reference[:, :2], proposals[:, :2])
br = torch.min(reference[:, :2] + reference[:, 2:], proposals[:, :2] + proposals[:, 2:])
sz = (br - tl).clamp(0)
# Area
intersection = sz.prod(dim=1)
union = reference[:, 2:].prod(dim=1) + proposals[:, 2:].prod(dim=1) - intersection
return intersection / union
def rand_uniform(a, b, shape=1):
""" sample numbers uniformly between a and b.
args:
a - lower bound
b - upper bound
shape - shape of the output tensor
returns:
torch.Tensor - tensor of shape=shape
"""
return (b - a) * torch.rand(shape) + a
def perturb_box(box, min_iou=0.5, sigma_factor=0.1):
""" Perturb the input box by adding gaussian noise to the co-ordinates
args:
box - input box
min_iou - minimum IoU overlap between input box and the perturbed box
sigma_factor - amount of perturbation, relative to the box size. Can be either a single element, or a list of
sigma_factors, in which case one of them will be uniformly sampled. Further, each of the
sigma_factor element can be either a float, or a tensor
of shape (4,) specifying the sigma_factor per co-ordinate
returns:
torch.Tensor - the perturbed box
"""
if isinstance(sigma_factor, list):
# If list, sample one sigma_factor as current sigma factor
c_sigma_factor = random.choice(sigma_factor)
else:
c_sigma_factor = sigma_factor
if not isinstance(c_sigma_factor, torch.Tensor):
c_sigma_factor = c_sigma_factor * torch.ones(4)
perturb_factor = torch.sqrt(box[2] * box[3]) * c_sigma_factor
# multiple tries to ensure that the perturbed box has iou > min_iou with the input box
for i_ in range(100):
c_x = box[0] + 0.5 * box[2]
c_y = box[1] + 0.5 * box[3]
c_x_per = random.gauss(c_x, perturb_factor[0])
c_y_per = random.gauss(c_y, perturb_factor[1])
w_per = random.gauss(box[2], perturb_factor[2])
h_per = random.gauss(box[3], perturb_factor[3])
if w_per <= 1:
w_per = box[2] * rand_uniform(0.15, 0.5)
if h_per <= 1:
h_per = box[3] * rand_uniform(0.15, 0.5)
box_per = torch.Tensor([c_x_per - 0.5 * w_per, c_y_per - 0.5 * h_per, w_per, h_per]).round()
if box_per[2] <= 1:
box_per[2] = box[2] * rand_uniform(0.15, 0.5)
if box_per[3] <= 1:
box_per[3] = box[3] * rand_uniform(0.15, 0.5)
box_iou = iou(box.view(1, 4), box_per.view(1, 4))
# if there is sufficient overlap, return
if box_iou > min_iou:
return box_per, box_iou
# else reduce the perturb factor
perturb_factor *= 0.9
return box_per, box_iou
def gauss_1d(sz, sigma, center, end_pad=0, density=False):
k = torch.arange(-(sz - 1) / 2, (sz + 1) / 2 + end_pad).reshape(1, -1)
gauss = torch.exp(-1.0 / (2 * sigma ** 2) * (k - center.reshape(-1, 1)) ** 2)
if density:
gauss /= math.sqrt(2 * math.pi) * sigma
return gauss
def gauss_2d(sz, sigma, center, end_pad=(0, 0), density=False):
if isinstance(sigma, (float, int)):
sigma = (sigma, sigma)
return gauss_1d(sz[0].item(), sigma[0], center[:, 0], end_pad[0], density).reshape(center.shape[0], 1, -1) * \
gauss_1d(sz[1].item(), sigma[1], center[:, 1], end_pad[1], density).reshape(center.shape[0], -1, 1)
def gaussian_label_function(target_bb, sigma_factor, kernel_sz, feat_sz, image_sz, end_pad_if_even=True, density=False,
uni_bias=0):
"""Construct Gaussian label function."""
if isinstance(kernel_sz, (float, int)):
kernel_sz = (kernel_sz, kernel_sz)
if isinstance(feat_sz, (float, int)):
feat_sz = (feat_sz, feat_sz)
if isinstance(image_sz, (float, int)):
image_sz = (image_sz, image_sz)
image_sz = torch.Tensor(image_sz)
feat_sz = torch.Tensor(feat_sz)
target_center = target_bb[:, 0:2] + 0.5 * target_bb[:, 2:4]
target_center_norm = (target_center - image_sz / 2) / image_sz
center = feat_sz * target_center_norm + 0.5 * \
torch.Tensor([(kernel_sz[0] + 1) % 2, (kernel_sz[1] + 1) % 2])
sigma = sigma_factor * feat_sz.prod().sqrt().item()
if end_pad_if_even:
end_pad = (int(kernel_sz[0] % 2 == 0), int(kernel_sz[1] % 2 == 0))
else:
end_pad = (0, 0)
gauss_label = gauss_2d(feat_sz, sigma, center, end_pad, density=density)
if density:
sz = (feat_sz + torch.Tensor(end_pad)).prod()
label = (1.0 - uni_bias) * gauss_label + uni_bias / sz
else:
label = gauss_label + uni_bias
return label
def gauss_density_centered(x, std):
"""Evaluate the probability density of a Gaussian centered at zero.
args:
x - Samples.
std - List of standard deviations
"""
return torch.exp(-0.5 * (x / std) ** 2) / (math.sqrt(2 * math.pi) * std)
def gmm_density_centered(x, std):
"""Evaluate the probability density of a GMM centered at zero.
args:
x - Samples. Assumes dim=-1 is the component dimension and dim=-2 is feature dimension. Rest are sample dimension.
std - Tensor of standard deviations
"""
if x.dim() == std.dim() - 1:
x = x.unsqueeze(-1)
elif not (x.dim() == std.dim() and x.shape[-1] == 1):
raise ValueError('Last dimension must be the gmm stds.')
return gauss_density_centered(x, std).prod(-2).mean(-1)
def sample_gmm_centered(std, num_samples=1):
"""Sample from a GMM distribution centered at zero:
args:
std - Tensor of standard deviations
num_samples - number of samples
"""
num_components = std.shape[-1]
num_dims = std.numel() // num_components
std = std.view(1, num_dims, num_components)
# Sample component ids
k = torch.randint(num_components, (num_samples,), dtype=torch.int64)
std_samp = std[0, :, k].t()
# Sample
x_centered = std_samp * torch.randn(num_samples, num_dims)
prob_dens = gmm_density_centered(x_centered, std)
return x_centered, prob_dens
def sample_gmm(mean, std, num_samples=1):
"""Sample from a GMM distribution:
args:
mean - a single mean vector
std - Tensor of standard deviations
num_samples - number of samples
"""
num_dims = mean.numel()
num_components = std.shape[-1]
mean = mean.view(1, num_dims)
std = std.view(1, -1, num_components)
# Sample component ids
k = torch.randint(num_components, (num_samples,), dtype=torch.int64)
std_samp = std[0, :, k].t()
# Sample
x_centered = std_samp * torch.randn(num_samples, num_dims)
x = x_centered + mean
prob_dens = gmm_density_centered(x_centered, std)
return x, prob_dens
def sample_box_gmm(mean_box, proposal_sigma, gt_sigma=None, num_samples=1, add_mean_box=False):
"""Sample boxes from a Gaussian mixture model.
args:
mean_box - Center (or mean) bounding box
proposal_sigma - List of standard deviations for each Gaussian
gt_sigma - Standard deviation of the ground truth distribution
num_samples - Number of sampled boxes
add_mean_box - Also add mean box as first element
returns:
proposals, proposal density and ground truth density for all samples
"""
center_std = torch.Tensor([s[0] for s in proposal_sigma])
sz_std = torch.Tensor([s[1] for s in proposal_sigma])
std = torch.stack([center_std, center_std, sz_std, sz_std])
mean_box = mean_box.view(1, 4)
sz_norm = mean_box[:, 2:].clone()
# Sample boxes
proposals_rel_centered, proposal_density = sample_gmm_centered(std, num_samples)
# Add mean and map back
mean_box_rel = rect_to_rel(mean_box, sz_norm)
proposals_rel = proposals_rel_centered + mean_box_rel
proposals = rel_to_rect(proposals_rel, sz_norm)
if gt_sigma is None or gt_sigma[0] == 0 and gt_sigma[1] == 0:
gt_density = torch.zeros_like(proposal_density)
else:
std_gt = torch.Tensor([gt_sigma[0], gt_sigma[0], gt_sigma[1], gt_sigma[1]]).view(1, 4)
gt_density = gauss_density_centered(proposals_rel_centered, std_gt).prod(-1)
if add_mean_box:
proposals = torch.cat((mean_box, proposals))
proposal_density = torch.cat((torch.Tensor([-1]), proposal_density))
gt_density = torch.cat((torch.Tensor([1]), gt_density))
return proposals, proposal_density, gt_density
def find_local_maxima(scores, th, ks):
"""Find local maxima in a heat map.
args:
scores - heat map to find the local maxima in.
th - threshold that defines the minamal value needed to be considered as a local maximum.
ks = local neighbourhood (kernel size) specifiying the minimal distance between two maxima.
returns:
coordinates and values of the local maxima.
"""
ndims = scores.ndim
if ndims == 2:
scores = scores.view(1, 1, scores.shape[0], scores.shape[1])
scores_max = F.max_pool2d(scores, kernel_size=ks, stride=1, padding=ks//2)
peak_mask = (scores == scores_max) & (scores > th)
coords = torch.nonzero(peak_mask)
intensities = scores[peak_mask]
# Highest peak first
idx_maxsort = torch.argsort(-intensities)
coords = coords[idx_maxsort]
intensities = intensities[idx_maxsort]
if ndims == 4:
coords_batch, intensities_batch, = TensorList(), TensorList()
for i in range(scores.shape[0]):
mask = (coords[:, 0] == i)
coords_batch.append(coords[mask, 2:])
intensities_batch.append(intensities[mask])
else:
coords_batch = coords[:, 2:]
intensities_batch = intensities
return coords_batch, intensities_batch