-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathloader.py
222 lines (190 loc) · 9.86 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.utils.data.dataloader
import importlib
import collections
from pytracking import TensorDict, TensorList
string_classes = (str, bytes)
def _check_use_shared_memory():
if hasattr(torch.utils.data.dataloader, '_use_shared_memory'):
return getattr(torch.utils.data.dataloader, '_use_shared_memory')
collate_lib = importlib.import_module('torch.utils.data._utils.collate')
if hasattr(collate_lib, '_use_shared_memory'):
return getattr(collate_lib, '_use_shared_memory')
return torch.utils.data.get_worker_info() is not None
def ltr_collate(batch):
"""Puts each data field into a tensor with outer dimension batch size"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _check_use_shared_memory():
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
# if batch[0].dim() < 4:
# return torch.stack(batch, 0, out=out)
# return torch.cat(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if torch.utils.data.dataloader.re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return torch.stack([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return torch.utils.data.dataloader.numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], TensorDict):
return TensorDict({key: ltr_collate([d[key] for d in batch]) for key in batch[0]})
elif isinstance(batch[0], collections.Mapping):
return {key: ltr_collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], TensorList):
transposed = zip(*batch)
return TensorList([ltr_collate(samples) for samples in transposed])
elif isinstance(batch[0], collections.Sequence):
transposed = zip(*batch)
return [ltr_collate(samples) for samples in transposed]
elif batch[0] is None:
return batch
raise TypeError((error_msg.format(type(batch[0]))))
def ltr_collate_stack1(batch):
"""Puts each data field into a tensor. The tensors are stacked at dim=1 to form the batch"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _check_use_shared_memory():
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 1, out=out)
# if batch[0].dim() < 4:
# return torch.stack(batch, 0, out=out)
# return torch.cat(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if torch.utils.data.dataloader.re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return torch.stack([torch.from_numpy(b) for b in batch], 1)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return torch.utils.data.dataloader.numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], TensorDict):
return TensorDict({key: ltr_collate_stack1([d[key] for d in batch]) for key in batch[0]})
elif isinstance(batch[0], collections.Mapping):
return {key: ltr_collate_stack1([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], TensorList):
transposed = zip(*batch)
return TensorList([ltr_collate_stack1(samples) for samples in transposed])
elif isinstance(batch[0], collections.Sequence):
transposed = zip(*batch)
return [ltr_collate_stack1(samples) for samples in transposed]
elif batch[0] is None:
return batch
raise TypeError((error_msg.format(type(batch[0]))))
class LTRLoader(torch.utils.data.dataloader.DataLoader):
"""
Data loader. Combines a dataset and a sampler, and provides
single- or multi-process iterators over the dataset.
Note: The only difference with default pytorch DataLoader is that an additional option stack_dim is available to
select along which dimension the data should be stacked to form a batch.
Arguments:
dataset (Dataset): dataset from which to load the data.
batch_size (int, optional): how many samples per batch to load
(default: 1).
shuffle (bool, optional): set to ``True`` to have the data reshuffled
at every epoch (default: False).
sampler (Sampler, optional): defines the strategy to draw samples from
the dataset. If specified, ``shuffle`` must be False.
batch_sampler (Sampler, optional): like sampler, but returns a batch of
indices at a time. Mutually exclusive with batch_size, shuffle,
sampler, and drop_last.
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
(default: 0)
collate_fn (callable, optional): merges a list of samples to form a mini-batch.
stack_dim (int): Dimension along which to stack to form the batch. (default: 0)
pin_memory (bool, optional): If ``True``, the data loader will copy tensors
into CUDA pinned memory before returning them.
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If ``False`` and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: False)
timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)
worker_init_fn (callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
input, after seeding and before data loading. (default: None)
.. note:: By default, each worker will have its PyTorch seed set to
``base_seed + worker_id``, where ``base_seed`` is a long generated
by main process using its RNG. However, seeds for other libraries
may be duplicated upon initializing workers (w.g., NumPy), causing
each worker to return identical random numbers. (See
:ref:`dataloader-workers-random-seed` section in FAQ.) You may
use ``torch.initial_seed()`` to access the PyTorch seed for each
worker in :attr:`worker_init_fn`, and use it to set other seeds
before data loading.
.. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an
unpicklable object, e.g., a lambda function.
"""
__initialized = False
def __init__(self, name, dataset, training=True, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
num_workers=0, epoch_interval=1, collate_fn=None, stack_dim=0, pin_memory=False, drop_last=False,
timeout=0, worker_init_fn=None):
if collate_fn is None:
if stack_dim == 0:
collate_fn = ltr_collate
elif stack_dim == 1:
collate_fn = ltr_collate_stack1
else:
raise ValueError('Stack dim no supported. Must be 0 or 1.')
super(LTRLoader, self).__init__(dataset, batch_size, shuffle, sampler, batch_sampler,
num_workers, collate_fn, pin_memory, drop_last,
timeout, worker_init_fn)
self.name = name
self.training = training
self.epoch_interval = epoch_interval
self.stack_dim = stack_dim
class MultiEpochLTRLoader(LTRLoader):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._DataLoader__initialized = False
self.batch_sampler = _RepeatSampler(self.batch_sampler)
self._DataLoader__initialized = True
self.iterator = super().__iter__()
def __len__(self):
return len(self.batch_sampler.sampler)
def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)
class _RepeatSampler(object):
""" Sampler that repeats forever.
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)