forked from ahmedfgad/GeneticAlgorithmPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_crossover_mutation.py
287 lines (223 loc) · 12 KB
/
test_crossover_mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import pygad
import random
import numpy
num_generations = 1
initial_population = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
def output_crossover_mutation(gene_space=None,
gene_type=float,
num_genes=10,
mutation_by_replacement=False,
random_mutation_min_val=-1,
random_mutation_max_val=1,
init_range_low=-4,
init_range_high=4,
initial_population=None,
crossover_probability=None,
mutation_probability=None,
crossover_type=None,
mutation_type=None,
parent_selection_type='sss',
multi_objective=False):
def fitness_func_no_batch_single(ga, solution, idx):
return random.random()
def fitness_func_no_batch_multi(ga, solution, idx):
return [random.random(), random.random()]
if multi_objective == True:
fitness_func = fitness_func_no_batch_multi
else:
fitness_func = fitness_func_no_batch_single
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=5,
fitness_func=fitness_func,
sol_per_pop=10,
num_genes=num_genes,
gene_space=gene_space,
gene_type=gene_type,
parent_selection_type=parent_selection_type,
initial_population=initial_population,
init_range_low=init_range_low,
init_range_high=init_range_high,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val,
allow_duplicate_genes=True,
mutation_by_replacement=mutation_by_replacement,
save_solutions=True,
crossover_probability=crossover_probability,
mutation_probability=mutation_probability,
crossover_type=crossover_type,
mutation_type=mutation_type,
suppress_warnings=True,
random_seed=1)
ga_instance.run()
comparison_result = []
for solution_idx, solution in enumerate(ga_instance.population):
if list(solution) in ga_instance.initial_population.tolist():
comparison_result.append(True)
else:
comparison_result.append(False)
comparison_result = numpy.array(comparison_result)
result = numpy.all(comparison_result == True)
print(f"Comparison result is {result}")
return result, ga_instance
def test_no_crossover_no_mutation():
result, ga_instance = output_crossover_mutation()
assert result == True
def test_no_crossover_no_mutation_gene_space():
result, ga_instance = output_crossover_mutation(gene_space=range(10))
assert result == True
def test_no_crossover_no_mutation_int_gene_type():
result, ga_instance = output_crossover_mutation(gene_type=int)
assert result == True
def test_no_crossover_no_mutation_gene_space_gene_type():
result, ga_instance = output_crossover_mutation(gene_space={"low": 0, "high": 10},
gene_type=[float, 2])
assert result == True
def test_no_crossover_no_mutation_nested_gene_space():
result, ga_instance = output_crossover_mutation(gene_space=[[0, 1, 2, 3, 4],
numpy.arange(5, 10),
range(10, 15),
{"low": 15, "high": 20},
{"low": 20, "high": 30, "step": 2},
None,
numpy.arange(30, 35),
numpy.arange(35, 40),
numpy.arange(40, 45),
[45, 46, 47, 48, 49]])
assert result == True
def test_no_crossover_no_mutation_nested_gene_type():
result, ga_instance = output_crossover_mutation(gene_type=[int, float, numpy.float64, [float, 3], [float, 4], numpy.int16, [numpy.float32, 1], int, float, [float, 3]])
assert result == True
def test_no_crossover_no_mutation_nested_gene_space_nested_gene_type():
result, ga_instance = output_crossover_mutation(gene_space=[[0, 1, 2, 3, 4],
numpy.arange(5, 10),
range(10, 15),
{"low": 15, "high": 20},
{"low": 20, "high": 30, "step": 2},
None,
numpy.arange(30, 35),
numpy.arange(35, 40),
numpy.arange(40, 45),
[45, 46, 47, 48, 49]],
gene_type=[int, float, numpy.float64, [float, 3], [float, 4], numpy.int16, [numpy.float32, 1], int, float, [float, 3]])
assert result == True
def test_no_crossover_no_mutation_initial_population():
global initial_population
result, ga_instance = output_crossover_mutation(initial_population=initial_population)
assert result == True
def test_no_crossover_no_mutation_initial_population_nested_gene_type():
global initial_population
result, ga_instance = output_crossover_mutation(initial_population=initial_population,
gene_type=[int, float, numpy.float64, [float, 3], [float, 4], numpy.int16, [numpy.float32, 1], int, float, [float, 3]])
assert result == True
def test_crossover_no_mutation_zero_crossover_probability():
global initial_population
result, ga_instance = output_crossover_mutation(crossover_type="single_point",
crossover_probability=0.0)
assert result == True
def test_zero_crossover_probability_zero_mutation_probability():
global initial_population
result, ga_instance = output_crossover_mutation(crossover_type="single_point",
crossover_probability=0.0,
mutation_type="random",
mutation_probability=0.0)
assert result == True
def test_random_mutation_manual_call():
result, ga_instance = output_crossover_mutation(mutation_type="random",
random_mutation_min_val=888,
random_mutation_max_val=999)
ga_instance.mutation_num_genes = 9
temp_offspring = numpy.array(initial_population[0:1])
offspring = ga_instance.random_mutation(offspring=temp_offspring.copy())
comp = offspring - temp_offspring
comp_sorted = sorted(comp.copy())
comp_sorted = numpy.abs(numpy.unique(comp_sorted))
# The other 1 added to include the last value in the range.
assert len(comp_sorted) in range(1, 1 + 1 + ga_instance.mutation_num_genes)
assert comp_sorted[0] == 0
def test_random_mutation_manual_call2():
result, ga_instance = output_crossover_mutation(mutation_type="random",
random_mutation_min_val=888,
random_mutation_max_val=999)
ga_instance.mutation_num_genes = 10
temp_offspring = numpy.array(initial_population[0:1])
offspring = ga_instance.random_mutation(offspring=temp_offspring.copy())
comp = offspring - temp_offspring
comp_sorted = sorted(comp.copy())
comp_sorted = numpy.abs(numpy.unique(comp_sorted))
# The other 1 added to include the last value in the range.
assert len(comp_sorted) in range(1, 1 + 1 + ga_instance.mutation_num_genes)
# assert comp_sorted[0] == 0
def test_random_mutation_manual_call3():
# Use random_mutation_min_val & random_mutation_max_val as numbers.
random_mutation_min_val = 888
random_mutation_max_val = 999
result, ga_instance = output_crossover_mutation(mutation_type="random",
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val,
mutation_by_replacement=True)
ga_instance.mutation_num_genes = 10
temp_offspring = numpy.array(initial_population[0:1])
offspring = ga_instance.random_mutation(offspring=temp_offspring.copy())
comp = offspring
comp_sorted = sorted(comp.copy())
comp_sorted = numpy.abs(numpy.unique(comp))
value_space = list(range(random_mutation_min_val, random_mutation_max_val))
for value in comp_sorted:
assert value in value_space
def test_random_mutation_manual_call4():
# Use random_mutation_min_val & random_mutation_max_val as lists.
random_mutation_min_val = [888]*10
random_mutation_max_val = [999]*10
result, ga_instance = output_crossover_mutation(mutation_type="random",
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val,
mutation_by_replacement=True)
ga_instance.mutation_num_genes = 10
temp_offspring = numpy.array(initial_population[0:1])
offspring = ga_instance.random_mutation(offspring=temp_offspring.copy())
comp = offspring
comp_sorted = sorted(comp.copy())
comp_sorted = numpy.abs(numpy.unique(comp))
value_space = list(range(random_mutation_min_val[0], random_mutation_max_val[0]))
for value in comp_sorted:
assert value in value_space
if __name__ == "__main__":
#### Single-objective
print()
test_no_crossover_no_mutation()
print()
test_no_crossover_no_mutation_int_gene_type()
print()
test_no_crossover_no_mutation_gene_space()
print()
test_no_crossover_no_mutation_gene_space_gene_type()
print()
test_no_crossover_no_mutation_nested_gene_space()
print()
test_no_crossover_no_mutation_nested_gene_type()
print()
test_no_crossover_no_mutation_initial_population()
print()
test_no_crossover_no_mutation_initial_population_nested_gene_type()
print()
test_crossover_no_mutation_zero_crossover_probability()
print()
test_zero_crossover_probability_zero_mutation_probability()
print()
test_random_mutation_manual_call()
print()
test_random_mutation_manual_call2()
print()
test_random_mutation_manual_call3()
print()
test_random_mutation_manual_call4()
print()