You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|**Llama 3.2 (3B)**|[▶️ Start for free](https://colab.research.google.com/drive/1T5-zKWM_5OD21QHwXHiV9ixTRR7k3iB9?usp=sharing)| 2x faster | 60% less |
26
-
|**Llama 3.2 Vision (11B)**|[▶️ Start for free](https://colab.research.google.com/drive/1j0N4XTY1zXXy7mPAhOC1_gMYZ2F2EBlk?usp=sharing)| 2x faster |40% less |
27
-
|**Llama 3.1 (8B)**|[▶️ Start for free](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing)| 2x faster |60% less |
28
-
|**Phi-3.5 (mini)**|[▶️ Start for free](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing)| 2x faster |50% less |
29
-
|**Gemma 2 (9B)**|[▶️ Start for free](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)| 2x faster | 63% less |
30
-
|**Qwen 2.5 (7B)**|[▶️ Start for free](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing)| 2x faster | 63% less |
31
-
|**Mistral v0.3 (7B)**|[▶️ Start for free](https://colab.research.google.com/drive/1_yNCks4BTD5zOnjozppphh5GzMFaMKq_?usp=sharing)| 2.2x faster | 73% less |
32
-
|**Ollama**|[▶️ Start for free](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)| 1.9x faster | 43% less |
33
-
|**ORPO**|[▶️ Start for free](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing)| 1.9x faster | 43% less |
34
-
|**DPO Zephyr**|[▶️ Start for free](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)| 1.9x faster | 43% less |
25
+
|**Llama 3.2 (3B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb)| 2x faster | 60% less |
26
+
|**Phi-4**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)| 2x faster |50% less |
27
+
|**Llama 3.2 Vision (11B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb)| 2x faster |40% less |
28
+
|**Llama 3.1 (8B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb)| 2x faster |60% less |
29
+
|**Gemma 2 (9B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb)| 2x faster | 63% less |
30
+
|**Qwen 2.5 (7B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb)| 2x faster | 63% less |
31
+
|**Mistral v0.3 (7B)**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb)| 2.2x faster | 73% less |
32
+
|**Ollama**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)| 1.9x faster | 43% less |
33
+
|**ORPO**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-ORPO.ipynb)| 1.9x faster | 43% less |
34
+
|**DPO Zephyr**|[▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Zephyr_(7B)-DPO.ipynb)| 1.9x faster | 43% less |
35
35
36
36
- See [all our notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks) and [all our models](https://docs.unsloth.ai/get-started/all-our-models)
- Run notebooks for [Llama 3.2 conversational](https://colab.research.google.com/drive/1T5-zKWM_5OD21QHwXHiV9ixTRR7k3iB9?usp=sharing), [Llama 3.1 conversational](https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE_?usp=sharing) and [Mistral v0.3 ChatML](https://colab.research.google.com/drive/15F1xyn8497_dUbxZP4zWmPZ3PJx1Oymv?usp=sharing)
38
+
- Run notebooks for [Llama 3.2 conversational](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb), [Llama 3.1 conversational](https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE_?usp=sharing) and [Mistral v0.3 ChatML](https://colab.research.google.com/drive/15F1xyn8497_dUbxZP4zWmPZ3PJx1Oymv?usp=sharing)
39
39
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for continued pretraining / raw text
40
-
- This [continued pretraining notebook](https://colab.research.google.com/drive/1tEd1FrOXWMnCU9UIvdYhs61tkxdMuKZu?usp=sharing) is for learning another language
40
+
- This [continued pretraining notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-CPT.ipynb) is for learning another language
41
41
- Click [here](https://docs.unsloth.ai/) for detailed documentation for Unsloth.
42
42
43
43
## 🦥 Unsloth.ai News
44
-
- 📣 NEW! [Llama 3.3 (70B)](https://huggingface.co/collections/unsloth/llama-33-all-versions-67535d7d994794b9d7cf5e9f), Meta's latest model is now supported.
44
+
- 📣 NEW! [Phi-4](https://unsloth.ai/blog/phi4) by Microsoft is now supported. We also [fixed bugs](https://unsloth.ai/blog/phi4) in Phi-4 and [uploaded GGUFs, 4-bit](https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa). Try the [Phi-4 Colab notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)
45
+
- 📣 NEW! [Llama 3.3 (70B)](https://huggingface.co/collections/unsloth/llama-33-all-versions-67535d7d994794b9d7cf5e9f), Meta's latest model is supported.
45
46
- 📣 NEW! We worked with Apple to add [Cut Cross Entropy](https://arxiv.org/abs/2411.09009). Unsloth now supports 89K context for Meta's Llama 3.3 (70B) on a 80GB GPU - 13x longer than HF+FA2. For Llama 3.1 (8B), Unsloth enables 342K context, surpassing its native 128K support.
46
47
- 📣 NEW! Introducing Unsloth [Dynamic 4-bit Quantization](https://unsloth.ai/blog/dynamic-4bit)! We dynamically opt not to quantize certain parameters and this greatly increases accuracy while only using <10% more VRAM than BnB 4-bit. See our collection on [Hugging Face here.](https://huggingface.co/collections/unsloth/unsloth-4-bit-dynamic-quants-67503bb873f89e15276c44e7)
47
48
- 📣 NEW! [Vision models](https://unsloth.ai/blog/vision) now supported! [Llama 3.2 Vision (11B)](https://colab.research.google.com/drive/1j0N4XTY1zXXy7mPAhOC1_gMYZ2F2EBlk?usp=sharing), [Qwen 2.5 VL (7B)](https://colab.research.google.com/drive/1whHb54GNZMrNxIsi2wm2EY_-Pvo2QyKh?usp=sharing) and [Pixtral (12B) 2409](https://colab.research.google.com/drive/1K9ZrdwvZRE96qGkCq_e88FgV3MLnymQq?usp=sharing)
0 commit comments