给定一个非空二叉树的根节点 root
, 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5
以内的答案可以被接受。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:[3.00000,14.50000,11.00000] 解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。 因此返回 [3, 14.5, 11] 。
示例 2:
输入:root = [3,9,20,15,7] 输出:[3.00000,14.50000,11.00000]
提示:
- 树中节点数量在
[1, 104]
范围内 -231 <= Node.val <= 231 - 1
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def averageOfLevels(self, root: TreeNode) -> List[float]:
res = []
q = deque([root])
while q:
n = len(q)
s = 0
for _ in range(n):
node = q.popleft()
s += node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
res.append(s / n)
return res
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Double> averageOfLevels(TreeNode root) {
List<Double> res = new ArrayList<>();
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
while (!q.isEmpty()) {
double s = 0, n = q.size();
for (int i = 0; i < n; ++i) {
TreeNode node = q.poll();
s += node.val;
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
res.add(s / n);
}
return res;
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var averageOfLevels = function (root) {
let res = [];
let queue = [root];
while (queue.length > 0) {
n = queue.length;
let sum = 0;
for (let i = 0; i < n; i++) {
let node = queue.shift();
sum += node.val;
if (node.left) {
queue.push(node.left);
}
if (node.right) {
queue.push(node.right);
}
}
res.push(sum / n);
}
return res;
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func averageOfLevels(root *TreeNode) []float64 {
q := []*TreeNode{root}
var ans []float64
for len(q) > 0 {
n := len(q)
var sum int
for i := 0; i < n; i++ {
node := q[0]
q = q[1:]
sum += node.Val
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
ans = append(ans, float64(sum)/float64(n))
}
return ans
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
queue<TreeNode*> q({root});
vector<double> ans;
while (!q.empty()) {
int n = q.size();
long long sum = 0;
for (int i = 0; i < n; ++i) {
TreeNode* node = q.front();
q.pop();
sum += node->val;
if (node->left != nullptr) q.push(node->left);
if (node->right != nullptr) q.push(node->right);
}
ans.emplace_back(sum * 1.0 / n);
}
return ans;
}
};
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> {
if root.is_none() {
return Vec::new();
}
let mut q = VecDeque::new();
q.push_back(Rc::clone(&root.unwrap()));
let mut ans = Vec::new();
while !q.is_empty() {
let n = q.len();
let mut sum = 0.0;
for _ in 0..n {
let node = q.pop_front().unwrap();
sum += node.borrow().val as f64;
if node.borrow().left.is_some() {
q.push_back(Rc::clone(node.borrow().left.as_ref().unwrap()));
}
if node.borrow().right.is_some() {
q.push_back(Rc::clone(node.borrow().right.as_ref().unwrap()));
}
}
ans.push(sum / n as f64);
}
ans
}
}