Skip to content

Latest commit

 

History

History

0307.Range Sum Query - Mutable

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给你一个数组 nums ,请你完成两类查询。

  1. 其中一类查询要求 更新 数组 nums 下标对应的值
  2. 另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的  ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 用整数数组 nums 初始化对象
  • void update(int index, int val)nums[index] 的值 更新val
  • int sumRange(int left, int right) 返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的  (即,nums[left] + nums[left + 1], ..., nums[right]

 

示例 1:

输入:
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
输出:
[null, 9, null, 8]

解释:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // 返回 1 + 3 + 5 = 9
numArray.update(1, 2);   // nums = [1,2,5]
numArray.sumRange(0, 2); // 返回 1 + 2 + 5 = 8

 

提示:

  • 1 <= nums.length <= 3 * 104
  • -100 <= nums[i] <= 100
  • 0 <= index < nums.length
  • -100 <= val <= 100
  • 0 <= left <= right < nums.length
  • 调用 pdatesumRange 方法次数不大于 3 * 104 

解法

方法一:树状数组

树状数组。

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 O(log n)

方法二:线段树

Python3

class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    @staticmethod
    def lowbit(x):
        return x & -x

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += BinaryIndexedTree.lowbit(x)

    def query(self, x):
        s = 0
        while x > 0:
            s += self.c[x]
            x -= BinaryIndexedTree.lowbit(x)
        return s

class NumArray:

    def __init__(self, nums: List[int]):
        self.tree = BinaryIndexedTree(len(nums))
        for i, v in enumerate(nums, 1):
            self.tree.update(i, v)

    def update(self, index: int, val: int) -> None:
        prev = self.sumRange(index, index)
        self.tree.update(index + 1, val - prev)

    def sumRange(self, left: int, right: int) -> int:
        return self.tree.query(right + 1) - self.tree.query(left)


# Your NumArray object will be instantiated and called as such:
# obj = NumArray(nums)
# obj.update(index,val)
# param_2 = obj.sumRange(left,right)
class Node:
    def __init__(self):
        self.l = 0
        self.r = 0
        self.v = 0

class SegmentTree:
    def __init__(self, nums):
        n = len(nums)
        self.tr = [Node() for _ in range(4 * n)]
        self.build(1, 1, n)
        for i, v in enumerate(nums, 1):
            self.modify(1, i, v)
        
    def build(self, u, l, r):
        self.tr[u].l = l
        self.tr[u].r = r
        if l == r:
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)

    def modify(self, u, x, v):
        if self.tr[u].l == x and self.tr[u].r == x:
            self.tr[u].v = v
            return
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if x <= mid:
            self.modify(u << 1, x, v)
        else:
            self.modify(u << 1 | 1, x, v)
        self.pushup(u)
    
    def pushup(self, u):
        self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].v
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        v = 0
        if l <= mid:
            v = self.query(u << 1, l, r)
        if r > mid:
            v += self.query(u << 1 | 1, l, r)
        return v

class NumArray:

    def __init__(self, nums: List[int]):
        self.tree = SegmentTree(nums)

    def update(self, index: int, val: int) -> None:
        self.tree.modify(1, index + 1, val)

    def sumRange(self, left: int, right: int) -> int:
        return self.tree.query(1, left + 1, right + 1)


# Your NumArray object will be instantiated and called as such:
# obj = NumArray(nums)
# obj.update(index,val)
# param_2 = obj.sumRange(left,right)

Java

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    public static int lowbit(int x) {
        return x & -x;
    }
}

class NumArray {
    private BinaryIndexedTree tree;

    public NumArray(int[] nums) {
        int n = nums.length;
        tree = new BinaryIndexedTree(n);
        for (int i = 0; i < n; ++i) {
            tree.update(i + 1, nums[i]);
        }
    }

    public void update(int index, int val) {
        int prev = sumRange(index, index);
        tree.update(index + 1, val - prev);
    }

    public int sumRange(int left, int right) {
        return tree.query(right + 1) - tree.query(left);
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * obj.update(index,val);
 * int param_2 = obj.sumRange(left,right);
 */
class Node {
    int l;
    int r;
    int v;
}

class SegmentTree {
    private Node[] tr;

    public SegmentTree(int[] nums) {
        int n = nums.length;
        tr = new Node[4 * n];
        for (int i = 0; i < tr.length; ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
        for (int i = 0; i < n; ++i) {
            modify(1, i + 1, nums[i]);
        }
    }

    public void build(int u, int l, int r) {
        tr[u].l = l;
        tr[u].r = r;
        if (l == r) {
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    public void modify(int u, int x, int v) {
        if (tr[u].l == x && tr[u].r == x) {
            tr[u].v = v;
            return;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        if (x <= mid) {
            modify(u << 1, x, v);
        } else {
            modify(u << 1 | 1, x, v);
        }
        pushup(u);
    }

    public void pushup(int u) {
        tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v;
    }

    public int query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            return tr[u].v;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        int v = 0;
        if (l <= mid) {
            v = query(u << 1, l, r);
        }
        if (r > mid) {
            v += query(u << 1 | 1, l, r);
        }
        return v;
    }
}

class NumArray {
    private SegmentTree tree;

    public NumArray(int[] nums) {
        tree = new SegmentTree(nums);
    }
    
    public void update(int index, int val) {
        tree.modify(1, index + 1, val);
    }
    
    public int sumRange(int left, int right) {
        return tree.query(1, left + 1, right + 1);
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * obj.update(index,val);
 * int param_2 = obj.sumRange(left,right);
 */

C++

class BinaryIndexedTree {
public:
    int n;
    vector<int> c;

    BinaryIndexedTree(int _n): n(_n), c(_n + 1){}

    void update(int x, int delta) {
        while (x <= n)
        {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    int query(int x) {
        int s = 0;
        while (x > 0)
        {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    int lowbit(int x) {
        return x & -x;
    }
};


class NumArray {
public:
    BinaryIndexedTree* tree;

    NumArray(vector<int>& nums) {
        int n = nums.size();
        tree = new BinaryIndexedTree(n);
        for (int i = 0; i < n; ++i) tree->update(i + 1, nums[i]);
    }

    void update(int index, int val) {
        int prev = sumRange(index, index);
        tree->update(index + 1, val - prev);
    }

    int sumRange(int left, int right) {
        return tree->query(right + 1) - tree->query(left);
    }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * obj->update(index,val);
 * int param_2 = obj->sumRange(left,right);
 */
class Node {
public:
    int l;
    int r;
    int v;
};

class SegmentTree {
public:
    vector<Node*> tr;

    SegmentTree(vector<int>& nums) {
        int n = nums.size();
        tr.resize(4 * n);
        for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
        build(1, 1, n);
        for (int i = 0; i < n; ++i) modify(1, i + 1, nums[i]);
    }

    void build(int u, int l, int r) {
        tr[u]->l = l;
        tr[u]->r = r;
        if (l == r) return;
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    void modify(int u, int x, int v) {
        if (tr[u]->l == x && tr[u]->r == x)
        {
            tr[u]->v = v;
            return;
        }
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        if (x <= mid) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }

    void pushup(int u) {
        tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v;
    }

    int query(int u, int l, int r) {
        if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        int v = 0;
        if (l <= mid) v = query(u << 1, l, r);
        if (r > mid) v += query(u << 1 | 1, l, r);
        return v;
    }
};

class NumArray {
public:
    SegmentTree* tree;

    NumArray(vector<int>& nums) {
        tree = new SegmentTree(nums);
    }
    
    void update(int index, int val) {
        return tree->modify(1, index + 1, val);
    }
    
    int sumRange(int left, int right) {
        return tree->query(1, left + 1, right + 1);
    }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * obj->update(index,val);
 * int param_2 = obj->sumRange(left,right);
 */

Go

type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	c := make([]int, n+1)
	return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
	return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
	for x <= this.n {
		this.c[x] += delta
		x += this.lowbit(x)
	}
}

func (this *BinaryIndexedTree) query(x int) int {
	s := 0
	for x > 0 {
		s += this.c[x]
		x -= this.lowbit(x)
	}
	return s
}

type NumArray struct {
	tree *BinaryIndexedTree
}

func Constructor(nums []int) NumArray {
	tree := newBinaryIndexedTree(len(nums))
	for i, v := range nums {
		tree.update(i+1, v)
	}
	return NumArray{tree}
}

func (this *NumArray) Update(index int, val int) {
	prev := this.SumRange(index, index)
	this.tree.update(index+1, val-prev)
}

func (this *NumArray) SumRange(left int, right int) int {
	return this.tree.query(right+1) - this.tree.query(left)
}

/**
 * Your NumArray object will be instantiated and called as such:
 * obj := Constructor(nums);
 * obj.Update(index,val);
 * param_2 := obj.SumRange(left,right);
 */

...