Skip to content

Latest commit

 

History

History

0907.Sum of Subarray Minimums

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给定一个整数数组 arr,找到 min(b) 的总和,其中 b 的范围为 arr 的每个(连续)子数组。

由于答案可能很大,因此 返回答案模 10^9 + 7

 

示例 1:

输入:arr = [3,1,2,4]
输出:17
解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。 
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。

示例 2:

输入:arr = [11,81,94,43,3]
输出:444

 

提示:

  • 1 <= arr.length <= 3 * 104
  • 1 <= arr[i] <= 3 * 104

 

解法

方法一:单调栈

枚举 $arr[i]$ 作为子数组的最小值,找出左侧第一个比 $arr[i]$ 小的位置 $left[i]$,右侧第一个不大于 $arr[i]$ 的位置 $right[i]$。由此可以算出最小值 $arr[i]$ 可以出现在多少个子数组中。

计算每个 $arr[i]$ 的贡献 $(i-left[i])*(right[i]-i)*arr[i]$,累加得到结果。

注意数据溢出与取模操作。

时间复杂度 $O(n)$,其中 $n$ 表示数组 $arr$ 的长度。

Python3

class Solution:
    def sumSubarrayMins(self, arr: List[int]) -> int:
        n = len(arr)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, v in enumerate(arr):
            while stk and arr[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and arr[stk[-1]] > arr[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        mod = int(1e9) + 7
        return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod

Java

class Solution {
    public int sumSubarrayMins(int[] arr) {
        int n = arr.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int mod = (int) 1e9 + 7;
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
            ans %= mod;
        }
        return (int) ans;
    }
}

C++

using ll = long long;
const int mod = 1e9 + 7;

class Solution {
public:
    int sumSubarrayMins(vector<int>& arr) {
        int n = arr.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i)
        {
            while (!stk.empty() && arr[stk.top()] >= arr[i]) stk.pop();
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; i >= 0; --i)
        {
            while (!stk.empty() && arr[stk.top()] > arr[i]) stk.pop();
            if (!stk.empty()) right[i] = stk.top();
            stk.push(i);
        }
        ll ans = 0;
        for (int i = 0; i < n; ++i)
        {
            ans += (ll) (i - left[i]) * (right[i] - i) * arr[i] % mod;
            ans %= mod;
        }
        return ans;
    }
};

Go

func sumSubarrayMins(arr []int) int {
	mod := int(1e9) + 7
	n := len(arr)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, v := range arr {
		for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	ans := 0
	for i, v := range arr {
		ans += (i - left[i]) * (right[i] - i) * v % mod
		ans %= mod
	}
	return ans
}

TypeScript

function sumSubarrayMins(arr: number[]): number {
    const n = arr.length;
    function getEle(i: number): number {
        if (i == -1 || i == n) return Number.MIN_SAFE_INTEGER;
        return arr[i];
    }
    let ans = 0;
    const mod = 10 ** 9 + 7;
    let stack = [];
    for (let i = -1; i <= n; i++) {
        while (stack.length && getEle(stack[0]) > getEle(i)) {
            const idx = stack.shift();
            ans = (ans + arr[idx] * (idx - stack[0]) * (i - idx)) % mod;
        }
        stack.unshift(i);
    }
    return ans;
}

...