|
17 | 17 | <pre>
|
18 | 18 | <strong>输入:</strong> n = 3, k = 0
|
19 | 19 | <strong>输出:</strong> 1
|
20 |
| -<strong>解释:</strong> |
| 20 | +<strong>解释:</strong> |
21 | 21 | 只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。
|
22 | 22 | </pre>
|
23 | 23 |
|
|
26 | 26 | <pre>
|
27 | 27 | <strong>输入:</strong> n = 3, k = 1
|
28 | 28 | <strong>输出:</strong> 2
|
29 |
| -<strong>解释:</strong> |
| 29 | +<strong>解释:</strong> |
30 | 30 | 数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。
|
31 | 31 | </pre>
|
32 | 32 |
|
|
41 | 41 |
|
42 | 42 | <!-- 这里可写通用的实现逻辑 -->
|
43 | 43 |
|
| 44 | +动态规划,我们规定 `dp[i][j]` 表示 `i` 个数字恰好拥有 `j` 个逆序对的不同数组的个数,最终答案为 `dp[n][k]` |
| 45 | + |
| 46 | +思考如何得到 `dp[i][j]`,假设 `i - 1` 个数字已经确定,现在插入 `i` 一共有 `i` 种情况: |
| 47 | + |
| 48 | +- 放在第一个,由于 `i` 比之前的任何数都大,所以会产生 `i - 1` 个逆序对,为了凑够 `j` 个逆序对,之前确定的数需要产生 `j - (i - 1)` 个逆序对 |
| 49 | +- 放在第二个,产生 `i - 2` 个逆序对,为了凑够 `j` 个逆序对,之前确定的数需要产生 `j - (i - 2)` 个逆序对 |
| 50 | +- 放在第三个......同理 |
| 51 | +- 放在最后一个,产生 `0` 个逆序对,之前确认的数需要产生 `j` 个逆序对 |
| 52 | + |
| 53 | +可得状态转移公式:`dp[i][j] = dp[i - 1][j - (i - 1)] + ... + dp[i - 1][j]` |
| 54 | + |
| 55 | +看到这种累加,很容易想到需要用前缀和进行优化。最终 `dp[i][]` 只依赖前缀和数组,甚至连 `dp[i - 1][]` 都不需要,所以可以进一步用一维数组优化空间 |
| 56 | + |
44 | 57 | <!-- tabs:start -->
|
45 | 58 |
|
46 | 59 | ### **Python3**
|
47 | 60 |
|
48 | 61 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
49 | 62 |
|
50 | 63 | ```python
|
| 64 | +class Solution: |
| 65 | + def kInversePairs(self, n: int, k: int) -> int: |
| 66 | + mod = 1000000007 |
| 67 | + dp, pre = [0] * (k + 1), [0] * (k + 2) |
| 68 | + for i in range(1, n + 1): |
| 69 | + dp[0] = 1 |
51 | 70 |
|
| 71 | + # dp[i][j] = dp[i - 1][j - (i - 1)] + ... + dp[i - 1][j] |
| 72 | + for j in range(1, k + 1): |
| 73 | + dp[j] = (pre[j + 1] - pre[max(0, j - i + 1)] + mod) % mod |
| 74 | + |
| 75 | + for j in range(1, k + 2): |
| 76 | + pre[j] = (pre[j - 1] + dp[j - 1]) % mod |
| 77 | + |
| 78 | + return dp[k] |
52 | 79 | ```
|
53 | 80 |
|
54 | 81 | ### **Java**
|
55 | 82 |
|
56 | 83 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
57 | 84 |
|
58 | 85 | ```java
|
| 86 | +class Solution { |
| 87 | + |
| 88 | + private static final int MOD = 1000000007; |
| 89 | + |
| 90 | + public int kInversePairs(int n, int k) { |
| 91 | + int[] dp = new int[k + 1]; |
| 92 | + int[] pre = new int[k + 2]; |
| 93 | + for (int i = 1; i <= n; i++) { |
| 94 | + dp[0] = 1; |
| 95 | + |
| 96 | + // dp[i][j] = dp[i - 1][j - (i - 1)] + ... + dp[i - 1][j] |
| 97 | + for (int j = 1; j <= k; j++) { |
| 98 | + dp[j] = (pre[j + 1] - pre[Math.max(0, j - i + 1)] + MOD) % MOD; |
| 99 | + } |
| 100 | + |
| 101 | + for (int j = 1; j <= k + 1; j++) { |
| 102 | + pre[j] = (pre[j - 1] + dp[j - 1]) % MOD; |
| 103 | + } |
| 104 | + } |
| 105 | + return dp[k]; |
| 106 | + } |
| 107 | +} |
| 108 | +``` |
| 109 | + |
| 110 | +### **Go** |
| 111 | + |
| 112 | +```go |
| 113 | +const mod int = 1e9 + 7 |
| 114 | + |
| 115 | +func kInversePairs(n int, k int) int { |
| 116 | + dp := make([]int, k+1) |
| 117 | + pre := make([]int, k+2) |
| 118 | + for i := 1; i <= n; i++ { |
| 119 | + dp[0] = 1 |
| 120 | + |
| 121 | + // dp[i][j] = dp[i - 1][j - (i - 1)] + ... + dp[i - 1][j] |
| 122 | + for j := 1; j <= k; j++ { |
| 123 | + dp[j] = (pre[j+1] - pre[max(0, j-i+1)] + mod) % mod |
| 124 | + } |
| 125 | + |
| 126 | + for j := 1; j <= k+1; j++ { |
| 127 | + pre[j] = (pre[j-1] + dp[j-1]) % mod |
| 128 | + } |
| 129 | + } |
| 130 | + return dp[k] |
| 131 | +} |
| 132 | + |
| 133 | +func max(a, b int) int { |
| 134 | + if a > b { |
| 135 | + return a |
| 136 | + } |
| 137 | + return b |
| 138 | +} |
| 139 | +``` |
59 | 140 |
|
| 141 | +### **C++** |
| 142 | + |
| 143 | +```cpp |
| 144 | +class Solution { |
| 145 | +private: |
| 146 | + static constexpr int MOD = 1e9 + 7; |
| 147 | + |
| 148 | +public: |
| 149 | + int kInversePairs(int n, int k) { |
| 150 | + vector<int> dp(k + 1), pre(k + 2, 0); |
| 151 | + for (int i = 1; i <= n; ++i) { |
| 152 | + dp[0] = 1; |
| 153 | + |
| 154 | + // dp[i][j] = dp[i - 1][j - (i - 1)] + ... + dp[i - 1][j] |
| 155 | + for (int j = 1; j <= k; ++j) { |
| 156 | + dp[j] = (pre[j + 1] - pre[max(0, j - i + 1)] + MOD) % MOD; |
| 157 | + } |
| 158 | + |
| 159 | + for (int j = 1; j <= k + 1; ++j) { |
| 160 | + pre[j] = (pre[j - 1] + dp[j - 1]) % MOD; |
| 161 | + } |
| 162 | + } |
| 163 | + return dp[k]; |
| 164 | + } |
| 165 | +}; |
60 | 166 | ```
|
61 | 167 |
|
62 | 168 | ### **...**
|
|
0 commit comments