在有向图中,从某个节点和每个转向处开始出发,沿着图的有向边走。如果到达的节点是终点(即它没有连出的有向边),则停止。
如果从起始节点出发,最后必然能走到终点,就认为起始节点是 最终安全 的。更具体地说,对于最终安全的起始节点而言,存在一个自然数 k
,无论选择沿哪条有向边行走 ,走了不到 k
步后必能停止在一个终点上。
返回一个由图中所有最终安全的起始节点组成的数组作为答案。答案数组中的元素应当按 升序 排列。
该有向图有 n
个节点,按 0
到 n - 1
编号,其中 n
是 graph
的节点数。图以下述形式给出:graph[i]
是编号 j
节点的一个列表,满足 (i, j)
是图的一条有向边。
出度为零的点是安全的,如果一个点只能到达安全的点,那么它同样是安全的,所以问题转换成了拓扑排序。
class Solution:
def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
n = len(graph)
outDegree = [len(vs) for vs in graph]
revGraph = [[] for _ in range(n)]
for u, vs in enumerate(graph):
for v in vs:
revGraph[v].append(u)
q = deque([i for i, d in enumerate(outDegree) if d == 0])
while q:
for u in revGraph[q.popleft()]:
outDegree[u] -= 1
if outDegree[u] == 0:
q.append(u)
return [i for i, d in enumerate(outDegree) if d == 0]
class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
int n = graph.length;
int[] outDegrees = new int[n];
Queue<Integer> queue = new ArrayDeque<>();
List<List<Integer>> revGraph = new ArrayList<>();
for (int i = 0; i < n; i++) {
revGraph.add(new ArrayList<>());
}
for (int u = 0; u < n; u++) {
for (int v : graph[u]) {
revGraph.get(v).add(u);
}
outDegrees[u] = graph[u].length;
if (outDegrees[u] == 0) {
queue.offer(u);
}
}
while (!queue.isEmpty()) {
int v = queue.poll();
for (int u : revGraph.get(v)) {
if (--outDegrees[u] == 0) {
queue.offer(u);
}
}
}
List<Integer> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (outDegrees[i] == 0) {
ans.add(i);
}
}
return ans;
}
}
func eventualSafeNodes(graph [][]int) []int {
n := len(graph)
outDegree := make([]int, n)
revGraph := make([][]int, n)
queue := make([]int, 0)
ans := make([]int, 0)
for u, vs := range graph {
for _, v := range vs {
revGraph[v] = append(revGraph[v], u)
}
outDegree[u] = len(vs)
if outDegree[u] == 0 {
queue = append(queue, u)
}
}
for len(queue) > 0 {
v := queue[0]
queue = queue[1:]
for _, u := range revGraph[v] {
outDegree[u]--
if outDegree[u] == 0 {
queue = append(queue, u)
}
}
}
for i, d := range outDegree {
if d == 0 {
ans = append(ans, i)
}
}
return ans
}
class Solution {
public:
vector<int> eventualSafeNodes(vector<vector<int>> &graph) {
int n = graph.size();
vector<vector<int>> revGraph(n);
vector<int> outDegree(n);
for (int i = 0; i < n; ++i)
{
outDegree[i] += graph[i].size();
for (int j : graph[i])
revGraph[j].push_back(i);
}
queue<int> q;
for (int i = 0; i < n; ++i)
if (outDegree[i] == 0)
q.push(i);
while (!q.empty())
{
int i = q.front();
q.pop();
for (int j : revGraph[i])
{
if (--outDegree[j] == 0)
q.push(j);
}
}
vector<int> ans;
for (int i = 0; i < n; ++i)
if (outDegree[i] == 0)
ans.push_back(i);
return ans;
}
};