Skip to content

Latest commit

 

History

History
150 lines (124 loc) · 3.73 KB

File metadata and controls

150 lines (124 loc) · 3.73 KB

中文文档

Description

The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

  • countAndSay(1) = "1"
  • countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string.

To determine how you "say" a digit string, split it into the minimal number of substrings such that each substring contains exactly one unique digit. Then for each substring, say the number of digits, then say the digit. Finally, concatenate every said digit.

For example, the saying and conversion for digit string "3322251":

Given a positive integer n, return the nth term of the count-and-say sequence.

 

Example 1:

Input: n = 1
Output: "1"
Explanation: This is the base case.

Example 2:

Input: n = 4
Output: "1211"
Explanation:
countAndSay(1) = "1"
countAndSay(2) = say "1" = one 1 = "11"
countAndSay(3) = say "11" = two 1's = "21"
countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"

 

Constraints:

  • 1 <= n <= 30

Solutions

Python3

class Solution:
    def countAndSay(self, n: int) -> str:
        s = '1'
        for _ in range(n - 1):
            i = 0
            t = []
            while i < len(s):
                j = i
                while j < len(s) and s[j] == s[i]:
                    j += 1
                t.append(str(j - i))
                t.append(str(s[i]))
                i = j
            s = ''.join(t)
        return s

Java

class Solution {
    public String countAndSay(int n) {
        String s = "1";
        while (--n > 0) {
            StringBuilder t = new StringBuilder();
            for (int i = 0; i < s.length();) {
                int j = i;
                while (j < s.length() && s.charAt(j) == s.charAt(i)) {
                    ++j;
                }
                t.append((j - i) + "");
                t.append(s.charAt(i));
                i = j;
            }
            s = t.toString();
        }
        return s;
    }
}

C++

class Solution {
public:
    string countAndSay(int n) {
        string s = "1";
        while (--n)
        {
            string t = "";
            for (int i = 0; i < s.size();)
            {
                int j = i;
                while (j < s.size() && s[j] == s[i]) ++j;
                t += to_string(j - i);
                t += s[i];
                i = j;
            }
            s = t;
        }
        return s;
    }
};

Go

func countAndSay(n int) string {
	s := "1"
	for k := 0; k < n-1; k++ {
		t := &strings.Builder{}
		i := 0
		for i < len(s) {
			j := i
			for j < len(s) && s[j] == s[i] {
				j++
			}
			t.WriteString(strconv.Itoa(j - i))
			t.WriteByte(s[i])
			i = j
		}
		s = t.String()
	}
	return s
}

...