|
| 1 | +#!/usr/bin/perl |
| 2 | + |
| 3 | +# Author: Daniel "Trizen" Șuteu |
| 4 | +# Date: 27 August 2025 |
| 5 | +# https://github.com/trizen |
| 6 | + |
| 7 | +# A sublinear algorithm for computing the Prime Counting function `pi(n)`, |
| 8 | +# based on the number of squarefree k-almost primes <= n, for `k >= 2`, which can be computed in sublinear time. |
| 9 | + |
| 10 | +# See also: |
| 11 | +# https://mathworld.wolfram.com/AlmostPrime.html |
| 12 | + |
| 13 | +use 5.036; |
| 14 | +use ntheory qw(:all); |
| 15 | + |
| 16 | +sub squarefree_almost_prime_count ($k, $n) { |
| 17 | + |
| 18 | + if ($k == 0) { |
| 19 | + return (($n <= 0) ? 0 : 1); |
| 20 | + } |
| 21 | + |
| 22 | + if ($k == 1) { |
| 23 | + return my_prime_count($n); |
| 24 | + } |
| 25 | + |
| 26 | + my $count = 0; |
| 27 | + |
| 28 | + sub ($m, $p, $k, $j = 1) { |
| 29 | + |
| 30 | + my $s = rootint(divint($n, $m), $k); |
| 31 | + |
| 32 | + if ($k == 2) { |
| 33 | + |
| 34 | + forprimes { |
| 35 | + $count += my_prime_count(divint($n, mulint($m, $_))) - $j++; |
| 36 | + } $p, $s; |
| 37 | + |
| 38 | + return; |
| 39 | + } |
| 40 | + |
| 41 | + foreach my $q (@{primes($p, $s)}) { |
| 42 | + __SUB__->(mulint($m, $q), $q + 1, $k - 1, ++$j); |
| 43 | + } |
| 44 | + } |
| 45 | + ->(1, 2, $k); |
| 46 | + |
| 47 | + return $count; |
| 48 | +} |
| 49 | + |
| 50 | +sub my_prime_count ($n) { |
| 51 | + |
| 52 | + state $pi_table = [0, 0, 1, 2, 2]; # a larger lookup table helps a lot! |
| 53 | + |
| 54 | + if ($n < 0) { |
| 55 | + return 0; |
| 56 | + } |
| 57 | + |
| 58 | + if (defined($pi_table->[$n])) { |
| 59 | + return $pi_table->[$n]; |
| 60 | + } |
| 61 | + |
| 62 | + my $M = powerfree_count($n, 2) - 1; |
| 63 | + |
| 64 | + foreach my $k (2 .. exp(LambertW(log($n))) + 1) { |
| 65 | + $M -= squarefree_almost_prime_count($k, $n); |
| 66 | + } |
| 67 | + |
| 68 | + return ($pi_table->[$n] //= $M); |
| 69 | +} |
| 70 | + |
| 71 | +foreach my $n (1..7) { # takes ~1 second |
| 72 | + say "pi(10^$n) = ", my_prime_count(10**$n); |
| 73 | +} |
| 74 | + |
| 75 | +__END__ |
| 76 | +pi(10^1) = 4 |
| 77 | +pi(10^2) = 25 |
| 78 | +pi(10^3) = 168 |
| 79 | +pi(10^4) = 1229 |
| 80 | +pi(10^5) = 9592 |
| 81 | +pi(10^6) = 78498 |
| 82 | +pi(10^7) = 664579 |
0 commit comments