|
| 1 | +#!/usr/bin/perl |
| 2 | + |
| 3 | +# Daniel "Trizen" Șuteu |
| 4 | +# Date: 25 May 2025 |
| 5 | +# https://github.com/trizen |
| 6 | + |
| 7 | +# A sublinear algorithm for computing the partial sums of the generalized gcd-sum function, using Dirichlet's hyperbola method. |
| 8 | + |
| 9 | +# Generalized Pillai's function: |
| 10 | +# pillai(n,k) = Sum_{d|n} mu(n/d) * d^k * tau(d) |
| 11 | + |
| 12 | +# Multiplicative formula for Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k, n)^k: |
| 13 | +# a(p^e) = (e - e/p^k + 1) * p^(k*e) = p^((e - 1) * k) * (p^k + e*(p^k - 1)) |
| 14 | + |
| 15 | +# The partial sums of the gcd-sum function is defined as: |
| 16 | +# |
| 17 | +# a(n) = Sum_{k=1..n} Sum_{d|k} d*phi(k/d) |
| 18 | +# |
| 19 | +# where phi(k) is the Euler totient function. |
| 20 | + |
| 21 | +# Also equivalent with: |
| 22 | +# a(n) = Sum_{j=1..n} Sum_{i=1..j} gcd(i, j) |
| 23 | + |
| 24 | +# Based on the formula: |
| 25 | +# a(n) = (1/2)*Sum_{k=1..n} phi(k) * floor(n/k) * floor(1+n/k) |
| 26 | + |
| 27 | +# Generalized formula: |
| 28 | +# a(n,k) = Sum_{x=1..n} J_k(x) * F_k(floor(n/x)) |
| 29 | +# where F_k(n) are the Faulhaber polynomials: F_k(n) = Sum_{x=1..n} x^k. |
| 30 | + |
| 31 | +# Example: |
| 32 | +# a(10^1) = 122 |
| 33 | +# a(10^2) = 18065 |
| 34 | +# a(10^3) = 2475190 |
| 35 | +# a(10^4) = 317257140 |
| 36 | +# a(10^5) = 38717197452 |
| 37 | +# a(10^6) = 4571629173912 |
| 38 | +# a(10^7) = 527148712519016 |
| 39 | +# a(10^8) = 59713873168012716 |
| 40 | +# a(10^9) = 6671288261316915052 |
| 41 | + |
| 42 | +# a(10^1, 2) = 1106 |
| 43 | +# a(10^2, 2) = 1598361 |
| 44 | +# a(10^3, 2) = 2193987154 |
| 45 | +# a(10^4, 2) = 2828894776292 |
| 46 | +# a(10^5, 2) = 3466053625977000 |
| 47 | +# a(10^6, 2) = 4104546122851466704 |
| 48 | +# a(10^7, 2) = 4742992578252739471520 |
| 49 | +# a(10^8, 2) = 5381500783126483704718848 |
| 50 | +# a(10^9, 2) = 6020011093886996189443484608 |
| 51 | + |
| 52 | +# OEIS sequences: |
| 53 | +# https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804. |
| 54 | +# https://oeis.org/A018804 -- Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n). |
| 55 | + |
| 56 | +# See also: |
| 57 | +# https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method |
| 58 | +# https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html |
| 59 | + |
| 60 | +use 5.020; |
| 61 | +use strict; |
| 62 | +use warnings; |
| 63 | + |
| 64 | +use experimental qw(signatures); |
| 65 | +use Math::AnyNum qw(faulhaber_sum ipow); |
| 66 | +use ntheory qw(jordan_totient sqrtint rootint); |
| 67 | + |
| 68 | +sub partial_sums_of_gcd_sum_function($n, $m) { |
| 69 | + |
| 70 | + my $s = sqrtint($n); |
| 71 | + my @totient_sum_lookup = (0); |
| 72 | + |
| 73 | + my $lookup_size = 2 + 2 * rootint($n, 3)**2; |
| 74 | + my @jordan_totient = (0); |
| 75 | + |
| 76 | + foreach my $x (1 .. $lookup_size) { |
| 77 | + push @jordan_totient, jordan_totient($m, $x); |
| 78 | + } |
| 79 | + |
| 80 | + foreach my $i (1 .. $lookup_size) { |
| 81 | + $totient_sum_lookup[$i] = $totient_sum_lookup[$i - 1] + $jordan_totient[$i]; |
| 82 | + } |
| 83 | + |
| 84 | + my %seen; |
| 85 | + |
| 86 | + my sub totient_partial_sum($n) { |
| 87 | + |
| 88 | + if ($n <= $lookup_size) { |
| 89 | + return $totient_sum_lookup[$n]; |
| 90 | + } |
| 91 | + |
| 92 | + if (exists $seen{$n}) { |
| 93 | + return $seen{$n}; |
| 94 | + } |
| 95 | + |
| 96 | + my $s = sqrtint($n); |
| 97 | + my $T = ${faulhaber_sum($n, $m)}; |
| 98 | + |
| 99 | + foreach my $k (2 .. int($n / ($s + 1))) { |
| 100 | + $T -= __SUB__->(int($n / $k)); |
| 101 | + } |
| 102 | + |
| 103 | + foreach my $k (1 .. $s) { |
| 104 | + $T -= (int($n / $k) - int($n / ($k + 1))) * $totient_sum_lookup[$k]; |
| 105 | + } |
| 106 | + |
| 107 | + $seen{$n} = $T; |
| 108 | + } |
| 109 | + |
| 110 | + my $A = 0; |
| 111 | + |
| 112 | + foreach my $k (1 .. $s) { |
| 113 | + my $t = int($n / $k); |
| 114 | + $A += ${ipow($k, $m)} * totient_partial_sum($t) + $jordan_totient[$k] * ${faulhaber_sum($t, $m)}; |
| 115 | + } |
| 116 | + |
| 117 | + my $T = ${faulhaber_sum($s, $m)}; |
| 118 | + my $C = totient_partial_sum($s); |
| 119 | + |
| 120 | + return ($A - $T * $C); |
| 121 | +} |
| 122 | + |
| 123 | +foreach my $n (1 .. 8) { # takes less than 1 second |
| 124 | + say "a(10^$n, 1) = ", partial_sums_of_gcd_sum_function(10**$n, 1); |
| 125 | +} |
| 126 | + |
| 127 | +say ''; |
| 128 | + |
| 129 | +foreach my $n (1 .. 8) { # takes less than 1 second |
| 130 | + say "a(10^$n, 2) = ", partial_sums_of_gcd_sum_function(10**$n, 2); |
| 131 | +} |
0 commit comments