forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrfcn_keras_box_predictor.py
204 lines (185 loc) · 8.25 KB
/
rfcn_keras_box_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RFCN Box Predictor."""
import tensorflow.compat.v1 as tf
from object_detection.core import box_predictor
from object_detection.utils import ops
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class RfcnKerasBoxPredictor(box_predictor.KerasBoxPredictor):
"""RFCN Box Predictor.
Applies a position sensitive ROI pooling on position sensitive feature maps to
predict classes and refined locations. See https://arxiv.org/abs/1605.06409
for details.
This is used for the second stage of the RFCN meta architecture. Notice that
locations are *not* shared across classes, thus for each anchor, a separate
prediction is made for each class.
"""
def __init__(self,
is_training,
num_classes,
conv_hyperparams,
freeze_batchnorm,
num_spatial_bins,
depth,
crop_size,
box_code_size,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
num_spatial_bins: A list of two integers `[spatial_bins_y,
spatial_bins_x]`.
depth: Target depth to reduce the input feature maps to.
crop_size: A list of two integers `[crop_height, crop_width]`.
box_code_size: Size of encoding for each box.
name: A string name scope to assign to the box predictor. If `None`, Keras
will auto-generate one from the class name.
"""
super(RfcnKerasBoxPredictor, self).__init__(
is_training, num_classes, freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=False, name=name)
self._freeze_batchnorm = freeze_batchnorm
self._conv_hyperparams = conv_hyperparams
self._num_spatial_bins = num_spatial_bins
self._depth = depth
self._crop_size = crop_size
self._box_code_size = box_code_size
# Build the shared layers used for both heads
self._shared_conv_layers = []
self._shared_conv_layers.append(
tf.keras.layers.Conv2D(
self._depth,
[1, 1],
padding='SAME',
name='reduce_depth_conv',
**self._conv_hyperparams.params()))
self._shared_conv_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='reduce_depth_batchnorm'))
self._shared_conv_layers.append(
self._conv_hyperparams.build_activation_layer(
name='reduce_depth_activation'))
self._box_encoder_layers = []
location_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self.num_classes *
self._box_code_size)
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
location_feature_map_depth,
[1, 1],
padding='SAME',
name='refined_locations_conv',
**self._conv_hyperparams.params()))
self._box_encoder_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='refined_locations_batchnorm'))
self._class_predictor_layers = []
self._total_classes = self.num_classes + 1 # Account for background class.
class_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self._total_classes)
self._class_predictor_layers.append(
tf.keras.layers.Conv2D(
class_feature_map_depth,
[1, 1],
padding='SAME',
name='class_predictions_conv',
**self._conv_hyperparams.params()))
self._class_predictor_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='class_predictions_batchnorm'))
@property
def num_classes(self):
return self._num_classes
def _predict(self, image_features, proposal_boxes, **kwargs):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
proposal_boxes: A float tensor of shape [batch_size, num_proposals,
box_code_size].
**kwargs: Unused Keyword args
Returns:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
Raises:
ValueError: if num_predictions_per_location is not 1 or if
len(image_features) is not 1.
"""
if len(image_features) != 1:
raise ValueError('length of `image_features` must be 1. Found {}'.
format(len(image_features)))
image_feature = image_features[0]
batch_size = tf.shape(proposal_boxes)[0]
num_boxes = tf.shape(proposal_boxes)[1]
net = image_feature
for layer in self._shared_conv_layers:
net = layer(net)
# Location predictions.
box_net = net
for layer in self._box_encoder_layers:
box_net = layer(box_net)
box_encodings = ops.batch_position_sensitive_crop_regions(
box_net,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, axis=[2, 3])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
class_net = net
for layer in self._class_predictor_layers:
class_net = layer(class_net)
class_predictions_with_background = (
ops.batch_position_sensitive_crop_regions(
class_net,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True))
class_predictions_with_background = tf.squeeze(
class_predictions_with_background, axis=[2, 3])
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size * num_boxes, 1, self._total_classes])
return {BOX_ENCODINGS: [box_encodings],
CLASS_PREDICTIONS_WITH_BACKGROUND:
[class_predictions_with_background]}