forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminibatch_sampler_test.py
71 lines (60 loc) · 2.78 KB
/
minibatch_sampler_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for google3.research.vale.object_detection.minibatch_sampler."""
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.core import minibatch_sampler
from object_detection.utils import test_case
class MinibatchSamplerTest(test_case.TestCase):
def test_subsample_indicator_when_more_true_elements_than_num_samples(self):
np_indicator = np.array([True, False, True, False, True, True, False])
def graph_fn(indicator):
samples = minibatch_sampler.MinibatchSampler.subsample_indicator(
indicator, 3)
return samples
samples_out = self.execute(graph_fn, [np_indicator])
self.assertTrue(np.sum(samples_out), 3)
self.assertAllEqual(samples_out,
np.logical_and(samples_out, np_indicator))
def test_subsample_indicator_when_less_true_elements_than_num_samples(self):
np_indicator = np.array([True, False, True, False, True, True, False])
def graph_fn(indicator):
samples = minibatch_sampler.MinibatchSampler.subsample_indicator(
indicator, 5)
return samples
samples_out = self.execute(graph_fn, [np_indicator])
self.assertTrue(np.sum(samples_out), 4)
self.assertAllEqual(samples_out,
np.logical_and(samples_out, np_indicator))
def test_subsample_indicator_when_num_samples_is_zero(self):
np_indicator = np.array([True, False, True, False, True, True, False])
def graph_fn(indicator):
samples_none = minibatch_sampler.MinibatchSampler.subsample_indicator(
indicator, 0)
return samples_none
samples_out = self.execute(graph_fn, [np_indicator])
self.assertAllEqual(
np.zeros_like(samples_out, dtype=bool),
samples_out)
def test_subsample_indicator_when_indicator_all_false(self):
indicator_empty = np.zeros([0], dtype=np.bool)
def graph_fn(indicator):
samples_empty = minibatch_sampler.MinibatchSampler.subsample_indicator(
indicator, 4)
return samples_empty
samples_out = self.execute(graph_fn, [indicator_empty])
self.assertEqual(0, samples_out.size)
if __name__ == '__main__':
tf.test.main()