forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnav_utils.py
435 lines (383 loc) · 18.2 KB
/
nav_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various losses for training navigation agents.
Defines various loss functions for navigation agents,
compute_losses_multi_or.
"""
import os, numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
from tensorflow.contrib.slim.nets import resnet_v2
from tensorflow.python.training import moving_averages
import logging
from src import utils
import src.file_utils as fu
from tfcode import tf_utils
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
ewma_decay=0.99, reg_loss_op=None):
assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
with tf.name_scope('loss'):
if weights is None:
weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
're_actions_one_hot'), tf.float32)
weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
reduction_indices=1)
total = tf.reduce_sum(weights)
action_prob = tf.nn.softmax(logits)
action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
reduction_indices=1)
example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))
data_loss_op = tf.reduce_sum(example_loss * weights) / total
if reg_loss_op is None:
if reg_loss_wt > 0:
reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
else:
reg_loss_op = tf.constant(0.)
if reg_loss_wt > 0:
total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op
else:
total_loss_op = data_loss_wt*data_loss_op
is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
acc_op = tf.reduce_sum(is_correct*weights) / total
ewma_acc_op = moving_averages.weighted_moving_average(
acc_op, ewma_decay, weight=total, name='ewma_acc')
acc_ops = [ewma_acc_op]
return reg_loss_op, data_loss_op, total_loss_op, acc_ops
def get_repr_from_image(images_reshaped, modalities, data_augment, encoder,
freeze_conv, wt_decay, is_training):
# Pass image through lots of convolutional layers, to obtain pool5
if modalities == ['rgb']:
with tf.name_scope('pre_rgb'):
x = (images_reshaped + 128.) / 255. # Convert to brightness between 0 and 1.
if data_augment.relight and is_training:
x = tf_utils.distort_image(x, fast_mode=data_augment.relight_fast)
x = (x-0.5)*2.0
scope_name = encoder
elif modalities == ['depth']:
with tf.name_scope('pre_d'):
d_image = images_reshaped
x = 2*(d_image[...,0] - 80.0)/100.0
y = d_image[...,1]
d_image = tf.concat([tf.expand_dims(x, -1), tf.expand_dims(y, -1)], 3)
x = d_image
scope_name = 'd_'+encoder
resnet_is_training = is_training and (not freeze_conv)
with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(resnet_is_training)):
fn = getattr(tf_utils, encoder)
x, end_points = fn(x, num_classes=None, global_pool=False,
output_stride=None, reuse=None,
scope=scope_name)
vars_ = slim.get_variables_to_restore()
conv_feat = x
return conv_feat, vars_
def default_train_step_kwargs(m, obj, logdir, rng_seed, is_chief, num_steps,
iters, train_display_interval,
dagger_sample_bn_false):
train_step_kwargs = {}
train_step_kwargs['obj'] = obj
train_step_kwargs['m'] = m
# rng_data has 2 independent rngs, one for sampling episodes and one for
# sampling perturbs (so that we can make results reproducible.
train_step_kwargs['rng_data'] = [np.random.RandomState(rng_seed),
np.random.RandomState(rng_seed)]
train_step_kwargs['rng_action'] = np.random.RandomState(rng_seed)
if is_chief:
train_step_kwargs['writer'] = tf.summary.FileWriter(logdir) #, m.tf_graph)
else:
train_step_kwargs['writer'] = None
train_step_kwargs['iters'] = iters
train_step_kwargs['train_display_interval'] = train_display_interval
train_step_kwargs['num_steps'] = num_steps
train_step_kwargs['logdir'] = logdir
train_step_kwargs['dagger_sample_bn_false'] = dagger_sample_bn_false
return train_step_kwargs
# Utilities for visualizing and analysing validation output.
def save_d_at_t(outputs, global_step, output_dir, metric_summary, N):
"""Save distance to goal at all time steps.
Args:
outputs : [gt_dist_to_goal].
global_step : number of iterations.
output_dir : output directory.
metric_summary : to append scalars to summary.
N : number of outputs to process.
"""
d_at_t = np.concatenate(map(lambda x: x[0][:,:,0]*1, outputs), axis=0)
fig, axes = utils.subplot(plt, (1,1), (5,5))
axes.plot(np.arange(d_at_t.shape[1]), np.mean(d_at_t, axis=0), 'r.')
axes.set_xlabel('time step')
axes.set_ylabel('dist to next goal')
axes.grid('on')
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.pkl'.format(global_step))
utils.save_variables(file_name, [d_at_t], ['d_at_t'], overwrite=True)
plt.close(fig)
return None
def save_all(outputs, global_step, output_dir, metric_summary, N):
"""Save numerous statistics.
Args:
outputs : [locs, goal_loc, gt_dist_to_goal, node_ids, perturbs]
global_step : number of iterations.
output_dir : output directory.
metric_summary : to append scalars to summary.
N : number of outputs to process.
"""
all_locs = np.concatenate(map(lambda x: x[0], outputs), axis=0)
all_goal_locs = np.concatenate(map(lambda x: x[1], outputs), axis=0)
all_d_at_t = np.concatenate(map(lambda x: x[2][:,:,0]*1, outputs), axis=0)
all_node_ids = np.concatenate(map(lambda x: x[3], outputs), axis=0)
all_perturbs = np.concatenate(map(lambda x: x[4], outputs), axis=0)
file_name = os.path.join(output_dir, 'all_locs_at_t_{:d}.pkl'.format(global_step))
vars = [all_locs, all_goal_locs, all_d_at_t, all_node_ids, all_perturbs]
var_names = ['all_locs', 'all_goal_locs', 'all_d_at_t', 'all_node_ids', 'all_perturbs']
utils.save_variables(file_name, vars, var_names, overwrite=True)
return None
def eval_ap(outputs, global_step, output_dir, metric_summary, N, num_classes=4):
"""Processes the collected outputs to compute AP for action prediction.
Args:
outputs : [logits, labels]
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
num_classes : number of classes to compute AP over, and to reshape tensors.
"""
if N >= 0:
outputs = outputs[:N]
logits = np.concatenate(map(lambda x: x[0], outputs), axis=0).reshape((-1, num_classes))
labels = np.concatenate(map(lambda x: x[1], outputs), axis=0).reshape((-1, num_classes))
aps = []
for i in range(logits.shape[1]):
ap, rec, prec = utils.calc_pr(labels[:,i], logits[:,i])
ap = ap[0]
tf_utils.add_value_to_summary(metric_summary, 'aps/ap_{:d}: '.format(i), ap)
aps.append(ap)
return aps
def eval_dist(outputs, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs during validation to
1. Plot the distance over time curve.
2. Compute mean and median distances.
3. Plots histogram of end distances.
Args:
outputs : [locs, goal_loc, gt_dist_to_goal].
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
SUCCESS_THRESH = 3
if N >= 0:
outputs = outputs[:N]
# Plot distance at time t.
d_at_t = []
for i in range(len(outputs)):
locs, goal_loc, gt_dist_to_goal = outputs[i]
d_at_t.append(gt_dist_to_goal[:,:,0]*1)
# Plot the distance.
fig, axes = utils.subplot(plt, (1,1), (5,5))
d_at_t = np.concatenate(d_at_t, axis=0)
axes.plot(np.arange(d_at_t.shape[1]), np.mean(d_at_t, axis=0), 'r.')
axes.set_xlabel('time step')
axes.set_ylabel('dist to next goal')
axes.grid('on')
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.pkl'.format(global_step))
utils.save_variables(file_name, [d_at_t], ['d_at_t'], overwrite=True)
plt.close(fig)
# Plot the trajectories and the init_distance and final distance.
d_inits = []
d_ends = []
for i in range(len(outputs)):
locs, goal_loc, gt_dist_to_goal = outputs[i]
d_inits.append(gt_dist_to_goal[:,0,0]*1)
d_ends.append(gt_dist_to_goal[:,-1,0]*1)
# Plot the distance.
fig, axes = utils.subplot(plt, (1,1), (5,5))
d_inits = np.concatenate(d_inits, axis=0)
d_ends = np.concatenate(d_ends, axis=0)
axes.plot(d_inits+np.random.rand(*(d_inits.shape))-0.5,
d_ends+np.random.rand(*(d_ends.shape))-0.5, '.', mec='red', mew=1.0)
axes.set_xlabel('init dist'); axes.set_ylabel('final dist');
axes.grid('on'); axes.axis('equal');
title_str = 'mean: {:0.1f}, 50: {:0.1f}, 75: {:0.2f}, s: {:0.1f}'
title_str = title_str.format(
np.mean(d_ends), np.median(d_ends), np.percentile(d_ends, q=75),
100*(np.mean(d_ends <= SUCCESS_THRESH)))
axes.set_title(title_str)
file_name = os.path.join(output_dir, 'dist_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
file_name = os.path.join(output_dir, 'dist_{:d}.pkl'.format(global_step))
utils.save_variables(file_name, [d_inits, d_ends], ['d_inits', 'd_ends'],
overwrite=True)
plt.close(fig)
# Plot the histogram of the end_distance.
with plt.style.context('seaborn-white'):
d_ends_ = np.sort(d_ends)
d_inits_ = np.sort(d_inits)
leg = [];
fig, ax = utils.subplot(plt, (1,1), (5,5))
ax.grid('on')
ax.set_xlabel('Distance from goal'); ax.xaxis.label.set_fontsize(16);
ax.set_ylabel('Fraction of data'); ax.yaxis.label.set_fontsize(16);
ax.plot(d_ends_, np.arange(d_ends_.size)*1./d_ends_.size, 'r')
ax.plot(d_inits_, np.arange(d_inits_.size)*1./d_inits_.size, 'k')
leg.append('Final'); leg.append('Init');
ax.legend(leg, fontsize='x-large');
ax.set_axis_on()
title_str = 'mean: {:0.1f}, 50: {:0.1f}, 75: {:0.2f}, s: {:0.1f}'
title_str = title_str.format(
np.mean(d_ends), np.median(d_ends), np.percentile(d_ends, q=75),
100*(np.mean(d_ends <= SUCCESS_THRESH)))
ax.set_title(title_str)
file_name = os.path.join(output_dir, 'dist_hist_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
# Log distance metrics.
tf_utils.add_value_to_summary(metric_summary, 'dists/success_init: ',
100*(np.mean(d_inits <= SUCCESS_THRESH)))
tf_utils.add_value_to_summary(metric_summary, 'dists/success_end: ',
100*(np.mean(d_ends <= SUCCESS_THRESH)))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_init (75): ',
np.percentile(d_inits, q=75))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_end (75): ',
np.percentile(d_ends, q=75))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_init (median): ',
np.median(d_inits))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_end (median): ',
np.median(d_ends))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_init (mean): ',
np.mean(d_inits))
tf_utils.add_value_to_summary(metric_summary, 'dists/dist_end (mean): ',
np.mean(d_ends))
return np.median(d_inits), np.median(d_ends), np.mean(d_inits), np.mean(d_ends), \
np.percentile(d_inits, q=75), np.percentile(d_ends, q=75), \
100*(np.mean(d_inits) <= SUCCESS_THRESH), 100*(np.mean(d_ends) <= SUCCESS_THRESH)
def plot_trajectories(outputs, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs during validation to plot the trajectories
in the top view.
Args:
outputs : [locs, orig_maps, goal_loc].
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('gray')
fig, axes = utils.subplot(plt, (N, outputs[0][1].shape[0]), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
locs, orig_maps, goal_loc = outputs[i]
is_semantic = np.isnan(goal_loc[0,0,1])
for j in range(orig_maps.shape[0]):
ax = axes.pop();
ax.plot(locs[j,0,0], locs[j,0,1], 'ys')
# Plot one by one, so that they come in different colors.
for k in range(goal_loc.shape[1]):
if not is_semantic:
ax.plot(goal_loc[j,k,0], goal_loc[j,k,1], 's')
if False:
ax.plot(locs[j,:,0], locs[j,:,1], 'r.', ms=3)
ax.imshow(orig_maps[j,0,:,:,0], origin='lower')
ax.set_axis_off();
else:
ax.scatter(locs[j,:,0], locs[j,:,1], c=np.arange(locs.shape[1]),
cmap='jet', s=10, lw=0)
ax.imshow(orig_maps[j,0,:,:,0], origin='lower', vmin=-1.0, vmax=2.0)
if not is_semantic:
xymin = np.minimum(np.min(goal_loc[j,:,:], axis=0), np.min(locs[j,:,:], axis=0))
xymax = np.maximum(np.max(goal_loc[j,:,:], axis=0), np.max(locs[j,:,:], axis=0))
else:
xymin = np.min(locs[j,:,:], axis=0)
xymax = np.max(locs[j,:,:], axis=0)
xy1 = (xymax+xymin)/2. - np.maximum(np.max(xymax-xymin), 12)
xy2 = (xymax+xymin)/2. + np.maximum(np.max(xymax-xymin), 12)
ax.set_xlim([xy1[0], xy2[0]])
ax.set_ylim([xy1[1], xy2[1]])
ax.set_axis_off()
file_name = os.path.join(output_dir, 'trajectory_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
return None
def add_default_summaries(mode, arop_full_summary_iters, summarize_ops,
summarize_names, to_aggregate, action_prob_op,
input_tensors, scope_name):
assert(mode == 'train' or mode == 'val' or mode == 'test'), \
'add_default_summaries mode is neither train or val or test.'
s_ops = tf_utils.get_default_summary_ops()
if mode == 'train':
s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \
arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries(
summarize_ops, summarize_names, mode, to_aggregate=False,
scope_name=scope_name)
s_ops.additional_return_ops += additional_return_ops
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
elif mode == 'val':
s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \
arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries(
summarize_ops, summarize_names, mode, to_aggregate=to_aggregate,
scope_name=scope_name)
s_ops.additional_return_ops += additional_return_ops
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
elif mode == 'test':
s_ops.summary_ops, s_ops.print_summary_ops, additional_return_ops, \
arop_summary_iters, arop_eval_fns = tf_utils.simple_summaries(
[], [], mode, to_aggregate=[], scope_name=scope_name)
s_ops.additional_return_ops += additional_return_ops
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
if mode == 'val':
arop = s_ops.additional_return_ops
arop += [[action_prob_op, input_tensors['train']['action']]]
arop += [[input_tensors['step']['loc_on_map'],
input_tensors['common']['goal_loc'],
input_tensors['step']['gt_dist_to_goal']]]
arop += [[input_tensors['step']['loc_on_map'],
input_tensors['common']['orig_maps'],
input_tensors['common']['goal_loc']]]
s_ops.arop_summary_iters += [-1, arop_full_summary_iters,
arop_full_summary_iters]
s_ops.arop_eval_fns += [eval_ap, eval_dist, plot_trajectories]
elif mode == 'test':
arop = s_ops.additional_return_ops
arop += [[input_tensors['step']['loc_on_map'],
input_tensors['common']['goal_loc'],
input_tensors['step']['gt_dist_to_goal']]]
arop += [[input_tensors['step']['gt_dist_to_goal']]]
arop += [[input_tensors['step']['loc_on_map'],
input_tensors['common']['goal_loc'],
input_tensors['step']['gt_dist_to_goal'],
input_tensors['step']['node_ids'],
input_tensors['step']['perturbs']]]
arop += [[input_tensors['step']['loc_on_map'],
input_tensors['common']['orig_maps'],
input_tensors['common']['goal_loc']]]
s_ops.arop_summary_iters += [-1, -1, -1, arop_full_summary_iters]
s_ops.arop_eval_fns += [eval_dist, save_d_at_t, save_all,
plot_trajectories]
return s_ops