forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmp_summary.py
213 lines (177 loc) · 8.14 KB
/
cmp_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Code for setting up summaries for CMP.
"""
import sys, os, numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
import logging
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from src import utils
import src.file_utils as fu
import tfcode.nav_utils as nu
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N):
# outputs is [gt_map, pred_map]:
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
gt_map, pred_map = outputs[i]
for j in [0]:
for k in range(gt_map.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(gt_map.shape[1]/2)
ax = axes.pop();
ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('gt_map')
ax = axes.pop();
ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('pred_map')
file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _vis(outputs, global_step, output_dir, metric_summary, N):
# Plot the value map, goal for various maps to see what if the model is
# learning anything useful.
#
# outputs is [values, goals, maps, occupancy, conf].
#
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*5), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
values, goals, maps, occupancy, conf = outputs[i]
for j in [0]:
for k in range(values.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(values.shape[1]/2)
ax = axes.pop();
ax.imshow(goals[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('goal')
ax = axes.pop();
ax.imshow(occupancy[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('occupancy')
ax = axes.pop();
ax.imshow(conf[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('conf')
ax = axes.pop();
ax.imshow(values[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('value')
ax = axes.pop();
ax.imshow(maps[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('incr map')
file_name = os.path.join(output_dir, 'value_vis_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _summary_vis(m, batch_size, num_steps, arop_full_summary_iters):
arop = []; arop_summary_iters = []; arop_eval_fns = [];
vis_value_ops = []; vis_goal_ops = []; vis_map_ops = [];
vis_occupancy_ops = []; vis_conf_ops = [];
for i, val_op in enumerate(m.value_ops):
vis_value_op = tf.reduce_mean(tf.abs(val_op), axis=3, keep_dims=True)
vis_value_ops.append(vis_value_op)
vis_occupancy_op = tf.reduce_mean(tf.abs(m.occupancys[i]), 3, True)
vis_occupancy_ops.append(vis_occupancy_op)
vis_conf_op = tf.reduce_max(tf.abs(m.confs[i]), axis=3, keep_dims=True)
vis_conf_ops.append(vis_conf_op)
ego_goal_imgs_i_op = m.input_tensors['step']['ego_goal_imgs_{:d}'.format(i)]
vis_goal_op = tf.reduce_max(ego_goal_imgs_i_op, 4, True)
vis_goal_ops.append(vis_goal_op)
vis_map_op = tf.reduce_mean(tf.abs(m.ego_map_ops[i]), 4, True)
vis_map_ops.append(vis_map_op)
vis_goal_ops = tf.concat(vis_goal_ops, 4)
vis_map_ops = tf.concat(vis_map_ops, 4)
vis_value_ops = tf.concat(vis_value_ops, 3)
vis_occupancy_ops = tf.concat(vis_occupancy_ops, 3)
vis_conf_ops = tf.concat(vis_conf_ops, 3)
sh = tf.unstack(tf.shape(vis_value_ops))[1:]
vis_value_ops = tf.reshape(vis_value_ops, shape=[batch_size, -1] + sh)
sh = tf.unstack(tf.shape(vis_conf_ops))[1:]
vis_conf_ops = tf.reshape(vis_conf_ops, shape=[batch_size, -1] + sh)
sh = tf.unstack(tf.shape(vis_occupancy_ops))[1:]
vis_occupancy_ops = tf.reshape(vis_occupancy_ops, shape=[batch_size,-1] + sh)
# Save memory, only return time steps that need to be visualized, factor of
# 32 CPU memory saving.
id = np.int(num_steps/2)
vis_goal_ops = tf.expand_dims(vis_goal_ops[:,id,:,:,:], axis=1)
vis_map_ops = tf.expand_dims(vis_map_ops[:,id,:,:,:], axis=1)
vis_value_ops = tf.expand_dims(vis_value_ops[:,id,:,:,:], axis=1)
vis_conf_ops = tf.expand_dims(vis_conf_ops[:,id,:,:,:], axis=1)
vis_occupancy_ops = tf.expand_dims(vis_occupancy_ops[:,id,:,:,:], axis=1)
arop += [[vis_value_ops, vis_goal_ops, vis_map_ops, vis_occupancy_ops,
vis_conf_ops]]
arop_summary_iters += [arop_full_summary_iters]
arop_eval_fns += [_vis]
return arop, arop_summary_iters, arop_eval_fns
def _summary_readout_maps(m, num_steps, arop_full_summary_iters):
arop = []; arop_summary_iters = []; arop_eval_fns = [];
id = np.int(num_steps-1)
vis_readout_maps_gt = m.readout_maps_gt
vis_readout_maps_prob = tf.reshape(m.readout_maps_probs,
shape=tf.shape(vis_readout_maps_gt))
vis_readout_maps_gt = tf.expand_dims(vis_readout_maps_gt[:,id,:,:,:], 1)
vis_readout_maps_prob = tf.expand_dims(vis_readout_maps_prob[:,id,:,:,:], 1)
arop += [[vis_readout_maps_gt, vis_readout_maps_prob]]
arop_summary_iters += [arop_full_summary_iters]
arop_eval_fns += [_vis_readout_maps]
return arop, arop_summary_iters, arop_eval_fns
def _add_summaries(m, args, summary_mode, arop_full_summary_iters):
task_params = args.navtask.task_params
summarize_ops = [m.lr_op, m.global_step_op, m.sample_gt_prob_op] + \
m.loss_ops + m.acc_ops
summarize_names = ['lr', 'global_step', 'sample_gt_prob_op'] + \
m.loss_ops_names + ['acc_{:d}'.format(i) for i in range(len(m.acc_ops))]
to_aggregate = [0, 0, 0] + [1]*len(m.loss_ops_names) + [1]*len(m.acc_ops)
scope_name = 'summary'
with tf.name_scope(scope_name):
s_ops = nu.add_default_summaries(summary_mode, arop_full_summary_iters,
summarize_ops, summarize_names,
to_aggregate, m.action_prob_op,
m.input_tensors, scope_name=scope_name)
if summary_mode == 'val':
arop, arop_summary_iters, arop_eval_fns = _summary_vis(
m, task_params.batch_size, task_params.num_steps,
arop_full_summary_iters)
s_ops.additional_return_ops += arop
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
if args.arch.readout_maps:
arop, arop_summary_iters, arop_eval_fns = _summary_readout_maps(
m, task_params.num_steps, arop_full_summary_iters)
s_ops.additional_return_ops += arop
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
return s_ops