forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap_utils.py
245 lines (212 loc) · 9.39 KB
/
map_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various function to compute the ground truth map for training etc.
"""
import copy
import skimage.morphology
import logging
import numpy as np
import scipy.ndimage
import matplotlib.pyplot as plt
import PIL
import src.utils as utils
import cv2
def _get_xy_bounding_box(vertex, padding):
"""Returns the xy bounding box of the environment."""
min_ = np.floor(np.min(vertex[:, :2], axis=0) - padding).astype(np.int)
max_ = np.ceil(np.max(vertex[:, :2], axis=0) + padding).astype(np.int)
return min_, max_
def _project_to_map(map, vertex, wt=None, ignore_points_outside_map=False):
"""Projects points to map, returns how many points are present at each
location."""
num_points = np.zeros((map.size[1], map.size[0]))
vertex_ = vertex[:, :2] - map.origin
vertex_ = np.round(vertex_ / map.resolution).astype(np.int)
if ignore_points_outside_map:
good_ind = np.all(np.array([vertex_[:,1] >= 0, vertex_[:,1] < map.size[1],
vertex_[:,0] >= 0, vertex_[:,0] < map.size[0]]),
axis=0)
vertex_ = vertex_[good_ind, :]
if wt is not None:
wt = wt[good_ind, :]
if wt is None:
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), 1)
else:
assert(wt.shape[0] == vertex.shape[0]), \
'number of weights should be same as vertices.'
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), wt)
return num_points
def make_map(padding, resolution, vertex=None, sc=1.):
"""Returns a map structure."""
min_, max_ = _get_xy_bounding_box(vertex*sc, padding=padding)
sz = np.ceil((max_ - min_ + 1) / resolution).astype(np.int32)
max_ = min_ + sz * resolution - 1
map = utils.Foo(origin=min_, size=sz, max=max_, resolution=resolution,
padding=padding)
return map
def _fill_holes(img, thresh):
"""Fills holes less than thresh area (assumes 4 connectivity when computing
hole area."""
l, n = scipy.ndimage.label(np.logical_not(img))
img_ = img == True
cnts = np.bincount(l.reshape(-1))
for i, cnt in enumerate(cnts):
if cnt < thresh:
l[l == i] = -1
img_[l == -1] = True
return img_
def compute_traversibility(map, robot_base, robot_height, robot_radius,
valid_min, valid_max, num_point_threshold, shapess,
sc=100., n_samples_per_face=200):
"""Returns a bit map with pixels that are traversible or not as long as the
robot center is inside this volume we are good colisions can be detected by
doing a line search on things, or walking from current location to final
location in the bitmap, or doing bwlabel on the traversibility map."""
tt = utils.Timer()
tt.tic()
num_obstcale_points = np.zeros((map.size[1], map.size[0]))
num_points = np.zeros((map.size[1], map.size[0]))
for i, shapes in enumerate(shapess):
for j in range(shapes.get_number_of_meshes()):
p, face_areas, face_idx = shapes.sample_points_on_face_of_shape(
j, n_samples_per_face, sc)
wt = face_areas[face_idx]/n_samples_per_face
ind = np.all(np.concatenate(
(p[:, [2]] > robot_base,
p[:, [2]] < robot_base + robot_height), axis=1),axis=1)
num_obstcale_points += _project_to_map(map, p[ind, :], wt[ind])
ind = np.all(np.concatenate(
(p[:, [2]] > valid_min,
p[:, [2]] < valid_max), axis=1),axis=1)
num_points += _project_to_map(map, p[ind, :], wt[ind])
selem = skimage.morphology.disk(robot_radius / map.resolution)
obstacle_free = skimage.morphology.binary_dilation(
_fill_holes(num_obstcale_points > num_point_threshold, 20), selem) != True
valid_space = _fill_holes(num_points > num_point_threshold, 20)
traversible = np.all(np.concatenate((obstacle_free[...,np.newaxis],
valid_space[...,np.newaxis]), axis=2),
axis=2)
# plt.imshow(np.concatenate((obstacle_free, valid_space, traversible), axis=1))
# plt.show()
map_out = copy.deepcopy(map)
map_out.num_obstcale_points = num_obstcale_points
map_out.num_points = num_points
map_out.traversible = traversible
map_out.obstacle_free = obstacle_free
map_out.valid_space = valid_space
tt.toc(log_at=1, log_str='src.map_utils.compute_traversibility: ')
return map_out
def resize_maps(map, map_scales, resize_method):
scaled_maps = []
for i, sc in enumerate(map_scales):
if resize_method == 'antialiasing':
# Resize using open cv so that we can compute the size.
# Use PIL resize to use anti aliasing feature.
map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
w = map_.shape[1]; h = map_.shape[0]
map_img = PIL.Image.fromarray((map*255).astype(np.uint8))
map__img = map_img.resize((w,h), PIL.Image.ANTIALIAS)
map_ = np.asarray(map__img).astype(np.float32)
map_ = map_/255.
map_ = np.minimum(map_, 1.0)
map_ = np.maximum(map_, 0.0)
elif resize_method == 'linear_noantialiasing':
map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
else:
logging.error('Unknown resizing method')
scaled_maps.append(map_)
return scaled_maps
def pick_largest_cc(traversible):
out = scipy.ndimage.label(traversible)[0]
cnt = np.bincount(out.reshape(-1))[1:]
return out == np.argmax(cnt) + 1
def get_graph_origin_loc(rng, traversible):
"""Erode the traversibility mask so that we get points in the bulk of the
graph, and not end up with a situation where the graph is localized in the
corner of a cramped room. Output Locs is in the coordinate frame of the
map."""
aa = pick_largest_cc(skimage.morphology.binary_erosion(traversible == True,
selem=np.ones((15,15))))
y, x = np.where(aa > 0)
ind = rng.choice(y.size)
locs = np.array([x[ind], y[ind]])
locs = locs + rng.rand(*(locs.shape)) - 0.5
return locs
def generate_egocentric_maps(scaled_maps, map_scales, map_crop_sizes, loc,
x_axis, y_axis, theta):
maps = []
for i, (map_, sc, map_crop_size) in enumerate(zip(scaled_maps, map_scales, map_crop_sizes)):
maps_i = np.array(get_map_to_predict(loc*sc, x_axis, y_axis, map_,
map_crop_size,
interpolation=cv2.INTER_LINEAR)[0])
maps_i[np.isnan(maps_i)] = 0
maps.append(maps_i)
return maps
def generate_goal_images(map_scales, map_crop_sizes, n_ori, goal_dist,
goal_theta, rel_goal_orientation):
goal_dist = goal_dist[:,0]
goal_theta = goal_theta[:,0]
rel_goal_orientation = rel_goal_orientation[:,0]
goals = [];
# Generate the map images.
for i, (sc, map_crop_size) in enumerate(zip(map_scales, map_crop_sizes)):
goal_i = np.zeros((goal_dist.shape[0], map_crop_size, map_crop_size, n_ori),
dtype=np.float32)
x = goal_dist*np.cos(goal_theta)*sc + (map_crop_size-1.)/2.
y = goal_dist*np.sin(goal_theta)*sc + (map_crop_size-1.)/2.
for j in range(goal_dist.shape[0]):
gc = rel_goal_orientation[j]
x0 = np.floor(x[j]).astype(np.int32); x1 = x0 + 1;
y0 = np.floor(y[j]).astype(np.int32); y1 = y0 + 1;
if x0 >= 0 and x0 <= map_crop_size-1:
if y0 >= 0 and y0 <= map_crop_size-1:
goal_i[j, y0, x0, gc] = (x1-x[j])*(y1-y[j])
if y1 >= 0 and y1 <= map_crop_size-1:
goal_i[j, y1, x0, gc] = (x1-x[j])*(y[j]-y0)
if x1 >= 0 and x1 <= map_crop_size-1:
if y0 >= 0 and y0 <= map_crop_size-1:
goal_i[j, y0, x1, gc] = (x[j]-x0)*(y1-y[j])
if y1 >= 0 and y1 <= map_crop_size-1:
goal_i[j, y1, x1, gc] = (x[j]-x0)*(y[j]-y0)
goals.append(goal_i)
return goals
def get_map_to_predict(src_locs, src_x_axiss, src_y_axiss, map, map_size,
interpolation=cv2.INTER_LINEAR):
fss = []
valids = []
center = (map_size-1.0)/2.0
dst_theta = np.pi/2.0
dst_loc = np.array([center, center])
dst_x_axis = np.array([np.cos(dst_theta), np.sin(dst_theta)])
dst_y_axis = np.array([np.cos(dst_theta+np.pi/2), np.sin(dst_theta+np.pi/2)])
def compute_points(center, x_axis, y_axis):
points = np.zeros((3,2),dtype=np.float32)
points[0,:] = center
points[1,:] = center + x_axis
points[2,:] = center + y_axis
return points
dst_points = compute_points(dst_loc, dst_x_axis, dst_y_axis)
for i in range(src_locs.shape[0]):
src_loc = src_locs[i,:]
src_x_axis = src_x_axiss[i,:]
src_y_axis = src_y_axiss[i,:]
src_points = compute_points(src_loc, src_x_axis, src_y_axis)
M = cv2.getAffineTransform(src_points, dst_points)
fs = cv2.warpAffine(map, M, (map_size, map_size), None, flags=interpolation,
borderValue=np.NaN)
valid = np.invert(np.isnan(fs))
valids.append(valid)
fss.append(fs)
return fss, valids