forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_utils.py
552 lines (484 loc) · 19.7 KB
/
graph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various function to manipulate graphs for computing distances.
"""
import skimage.morphology
import numpy as np
import networkx as nx
import itertools
import logging
from datasets.nav_env import get_path_ids
import graph_tool as gt
import graph_tool.topology
import graph_tool.generation
import src.utils as utils
# Compute shortest path from all nodes to or from all source nodes
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
gtG_ = gt.Graph(gtG)
v = gtG_.add_vertex()
if weights is not None:
weights = gtG_.edge_properties[weights]
for s in source_nodes:
e = gtG_.add_edge(s, int(v))
if weights is not None:
weights[e] = 0.
if direction == 'to':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
target=None, weights=weights)
elif direction == 'from':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
target=None, weights=weights)
dist = np.array(dist.get_array())
dist = dist[:-1]
if weights is None:
dist = dist-1
return dist
# Functions for semantically labelling nodes in the traversal graph.
def generate_lattice(sz_x, sz_y):
"""Generates a lattice with sz_x vertices along x and sz_y vertices along y
direction Each of these vertices is step_size distance apart. Origin is at
(0,0). """
g = gt.generation.lattice([sz_x, sz_y])
x, y = np.meshgrid(np.arange(sz_x), np.arange(sz_y))
x = np.reshape(x, [-1,1]); y = np.reshape(y, [-1,1]);
nodes = np.concatenate((x,y), axis=1)
return g, nodes
def add_diagonal_edges(g, nodes, sz_x, sz_y, edge_len):
offset = [sz_x+1, sz_x-1]
for o in offset:
s = np.arange(nodes.shape[0]-o-1)
t = s + o
ind = np.all(np.abs(nodes[s,:] - nodes[t,:]) == np.array([[1,1]]), axis=1)
s = s[ind][:,np.newaxis]
t = t[ind][:,np.newaxis]
st = np.concatenate((s,t), axis=1)
for i in range(st.shape[0]):
e = g.add_edge(st[i,0], st[i,1], add_missing=False)
g.ep['wts'][e] = edge_len
def convert_traversible_to_graph(traversible, ff_cost=1., fo_cost=1.,
oo_cost=1., connectivity=4):
assert(connectivity == 4 or connectivity == 8)
sz_x = traversible.shape[1]
sz_y = traversible.shape[0]
g, nodes = generate_lattice(sz_x, sz_y)
# Assign costs.
edge_wts = g.new_edge_property('float')
g.edge_properties['wts'] = edge_wts
wts = np.ones(g.num_edges(), dtype=np.float32)
edge_wts.get_array()[:] = wts
if connectivity == 8:
add_diagonal_edges(g, nodes, sz_x, sz_y, np.sqrt(2.))
se = np.array([[int(e.source()), int(e.target())] for e in g.edges()])
s_xy = nodes[se[:,0]]
t_xy = nodes[se[:,1]]
s_t = np.ravel_multi_index((s_xy[:,1], s_xy[:,0]), traversible.shape)
t_t = np.ravel_multi_index((t_xy[:,1], t_xy[:,0]), traversible.shape)
s_t = traversible.ravel()[s_t]
t_t = traversible.ravel()[t_t]
wts = np.zeros(g.num_edges(), dtype=np.float32)
wts[np.logical_and(s_t == True, t_t == True)] = ff_cost
wts[np.logical_and(s_t == False, t_t == False)] = oo_cost
wts[np.logical_xor(s_t, t_t)] = fo_cost
edge_wts = g.edge_properties['wts']
for i, e in enumerate(g.edges()):
edge_wts[e] = edge_wts[e] * wts[i]
# d = edge_wts.get_array()*1.
# edge_wts.get_array()[:] = d*wts
return g, nodes
def label_nodes_with_class(nodes_xyt, class_maps, pix):
"""
Returns:
class_maps__: one-hot class_map for each class.
node_class_label: one-hot class_map for each class, nodes_xyt.shape[0] x n_classes
"""
# Assign each pixel to a node.
selem = skimage.morphology.disk(pix)
class_maps_ = class_maps*1.
for i in range(class_maps.shape[2]):
class_maps_[:,:,i] = skimage.morphology.dilation(class_maps[:,:,i]*1, selem)
class_maps__ = np.argmax(class_maps_, axis=2)
class_maps__[np.max(class_maps_, axis=2) == 0] = -1
# For each node pick out the label from this class map.
x = np.round(nodes_xyt[:,[0]]).astype(np.int32)
y = np.round(nodes_xyt[:,[1]]).astype(np.int32)
ind = np.ravel_multi_index((y,x), class_maps__.shape)
node_class_label = class_maps__.ravel()[ind][:,0]
# Convert to one hot versions.
class_maps_one_hot = np.zeros(class_maps.shape, dtype=np.bool)
node_class_label_one_hot = np.zeros((node_class_label.shape[0], class_maps.shape[2]), dtype=np.bool)
for i in range(class_maps.shape[2]):
class_maps_one_hot[:,:,i] = class_maps__ == i
node_class_label_one_hot[:,i] = node_class_label == i
return class_maps_one_hot, node_class_label_one_hot
def label_nodes_with_class_geodesic(nodes_xyt, class_maps, pix, traversible,
ff_cost=1., fo_cost=1., oo_cost=1.,
connectivity=4):
"""Labels nodes in nodes_xyt with class labels using geodesic distance as
defined by traversible from class_maps.
Inputs:
nodes_xyt
class_maps: counts for each class.
pix: distance threshold to consider close enough to target.
traversible: binary map of whether traversible or not.
Output:
labels: For each node in nodes_xyt returns a label of the class or -1 is
unlabelled.
"""
g, nodes = convert_traversible_to_graph(traversible, ff_cost=ff_cost,
fo_cost=fo_cost, oo_cost=oo_cost,
connectivity=connectivity)
class_dist = np.zeros_like(class_maps*1.)
n_classes = class_maps.shape[2]
if False:
# Assign each pixel to a class based on number of points.
selem = skimage.morphology.disk(pix)
class_maps_ = class_maps*1.
class_maps__ = np.argmax(class_maps_, axis=2)
class_maps__[np.max(class_maps_, axis=2) == 0] = -1
# Label nodes with classes.
for i in range(n_classes):
# class_node_ids = np.where(class_maps__.ravel() == i)[0]
class_node_ids = np.where(class_maps[:,:,i].ravel() > 0)[0]
dist_i = get_distance_node_list(g, class_node_ids, 'to', weights='wts')
class_dist[:,:,i] = np.reshape(dist_i, class_dist[:,:,i].shape)
class_map_geodesic = (class_dist <= pix)
class_map_geodesic = np.reshape(class_map_geodesic, [-1, n_classes])
# For each node pick out the label from this class map.
x = np.round(nodes_xyt[:,[0]]).astype(np.int32)
y = np.round(nodes_xyt[:,[1]]).astype(np.int32)
ind = np.ravel_multi_index((y,x), class_dist[:,:,0].shape)
node_class_label = class_map_geodesic[ind[:,0],:]
class_map_geodesic = class_dist <= pix
return class_map_geodesic, node_class_label
def _get_next_nodes_undirected(n, sc, n_ori):
nodes_to_add = []
nodes_to_validate = []
(p, q, r) = n
nodes_to_add.append((n, (p, q, r), 0))
if n_ori == 4:
for _ in [1, 2, 3, 4]:
if _ == 1:
v = (p - sc, q, r)
elif _ == 2:
v = (p + sc, q, r)
elif _ == 3:
v = (p, q - sc, r)
elif _ == 4:
v = (p, q + sc, r)
nodes_to_validate.append((n, v, _))
return nodes_to_add, nodes_to_validate
def _get_next_nodes(n, sc, n_ori):
nodes_to_add = []
nodes_to_validate = []
(p, q, r) = n
for r_, a_ in zip([-1, 0, 1], [1, 0, 2]):
nodes_to_add.append((n, (p, q, np.mod(r+r_, n_ori)), a_))
if n_ori == 6:
if r == 0:
v = (p + sc, q, r)
elif r == 1:
v = (p + sc, q + sc, r)
elif r == 2:
v = (p, q + sc, r)
elif r == 3:
v = (p - sc, q, r)
elif r == 4:
v = (p - sc, q - sc, r)
elif r == 5:
v = (p, q - sc, r)
elif n_ori == 4:
if r == 0:
v = (p + sc, q, r)
elif r == 1:
v = (p, q + sc, r)
elif r == 2:
v = (p - sc, q, r)
elif r == 3:
v = (p, q - sc, r)
nodes_to_validate.append((n,v,3))
return nodes_to_add, nodes_to_validate
def generate_graph(valid_fn_vec=None, sc=1., n_ori=6,
starting_location=(0, 0, 0), vis=False, directed=True):
timer = utils.Timer()
timer.tic()
if directed: G = nx.DiGraph(directed=True)
else: G = nx.Graph()
G.add_node(starting_location)
new_nodes = G.nodes()
while len(new_nodes) != 0:
nodes_to_add = []
nodes_to_validate = []
for n in new_nodes:
if directed:
na, nv = _get_next_nodes(n, sc, n_ori)
else:
na, nv = _get_next_nodes_undirected(n, sc, n_ori)
nodes_to_add = nodes_to_add + na
if valid_fn_vec is not None:
nodes_to_validate = nodes_to_validate + nv
else:
node_to_add = nodes_to_add + nv
# Validate nodes.
vs = [_[1] for _ in nodes_to_validate]
valids = valid_fn_vec(vs)
for nva, valid in zip(nodes_to_validate, valids):
if valid:
nodes_to_add.append(nva)
new_nodes = []
for n,v,a in nodes_to_add:
if not G.has_node(v):
new_nodes.append(v)
G.add_edge(n, v, action=a)
timer.toc(average=True, log_at=1, log_str='src.graph_utils.generate_graph')
return (G)
def vis_G(G, ax, vertex_color='r', edge_color='b', r=None):
if edge_color is not None:
for e in G.edges():
XYT = zip(*e)
x = XYT[-3]
y = XYT[-2]
t = XYT[-1]
if r is None or t[0] == r:
ax.plot(x, y, edge_color)
if vertex_color is not None:
XYT = zip(*G.nodes())
x = XYT[-3]
y = XYT[-2]
t = XYT[-1]
ax.plot(x, y, vertex_color + '.')
def convert_to_graph_tool(G):
timer = utils.Timer()
timer.tic()
gtG = gt.Graph(directed=G.is_directed())
gtG.ep['action'] = gtG.new_edge_property('int')
nodes_list = G.nodes()
nodes_array = np.array(nodes_list)
nodes_id = np.zeros((nodes_array.shape[0],), dtype=np.int64)
for i in range(nodes_array.shape[0]):
v = gtG.add_vertex()
nodes_id[i] = int(v)
# d = {key: value for (key, value) in zip(nodes_list, nodes_id)}
d = dict(itertools.izip(nodes_list, nodes_id))
for src, dst, data in G.edges_iter(data=True):
e = gtG.add_edge(d[src], d[dst])
gtG.ep['action'][e] = data['action']
nodes_to_id = d
timer.toc(average=True, log_at=1, log_str='src.graph_utils.convert_to_graph_tool')
return gtG, nodes_array, nodes_to_id
def _rejection_sampling(rng, sampling_d, target_d, bins, hardness, M):
bin_ind = np.digitize(hardness, bins)-1
i = 0
ratio = target_d[bin_ind] / (M*sampling_d[bin_ind])
while i < ratio.size and rng.rand() > ratio[i]:
i = i+1
return i
def heuristic_fn_vec(n1, n2, n_ori, step_size):
# n1 is a vector and n2 is a single point.
dx = (n1[:,0] - n2[0,0])/step_size
dy = (n1[:,1] - n2[0,1])/step_size
dt = n1[:,2] - n2[0,2]
dt = np.mod(dt, n_ori)
dt = np.minimum(dt, n_ori-dt)
if n_ori == 6:
if dx*dy > 0:
d = np.maximum(np.abs(dx), np.abs(dy))
else:
d = np.abs(dy-dx)
elif n_ori == 4:
d = np.abs(dx) + np.abs(dy)
return (d + dt).reshape((-1,1))
def get_hardness_distribution(gtG, max_dist, min_dist, rng, trials, bins, nodes,
n_ori, step_size):
heuristic_fn = lambda node_ids, node_id: \
heuristic_fn_vec(nodes[node_ids, :], nodes[[node_id], :], n_ori, step_size)
num_nodes = gtG.num_vertices()
gt_dists = []; h_dists = [];
for i in range(trials):
end_node_id = rng.choice(num_nodes)
gt_dist = gt.topology.shortest_distance(gt.GraphView(gtG, reversed=True),
source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
gt_dist = gt_dist[ind]
h_dist = heuristic_fn(ind, end_node_id)[:,0]
gt_dists.append(gt_dist)
h_dists.append(h_dist)
gt_dists = np.concatenate(gt_dists)
h_dists = np.concatenate(h_dists)
hardness = 1. - h_dists*1./gt_dists
hist, _ = np.histogram(hardness, bins)
hist = hist.astype(np.float64)
hist = hist / np.sum(hist)
return hist
def rng_next_goal_rejection_sampling(start_node_ids, batch_size, gtG, rng,
max_dist, min_dist, max_dist_to_compute,
sampling_d, target_d,
nodes, n_ori, step_size, bins, M):
sample_start_nodes = start_node_ids is None
dists = []; pred_maps = []; end_node_ids = []; start_node_ids_ = [];
hardnesss = []; gt_dists = [];
num_nodes = gtG.num_vertices()
for i in range(batch_size):
done = False
while not done:
if sample_start_nodes:
start_node_id = rng.choice(num_nodes)
else:
start_node_id = start_node_ids[i]
gt_dist = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=start_node_id, target=None,
max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
ind = rng.permutation(ind)
gt_dist = gt_dist[ind]*1.
h_dist = heuristic_fn_vec(nodes[ind, :], nodes[[start_node_id], :],
n_ori, step_size)[:,0]
hardness = 1. - h_dist / gt_dist
sampled_ind = _rejection_sampling(rng, sampling_d, target_d, bins,
hardness, M)
if sampled_ind < ind.size:
# print sampled_ind
end_node_id = ind[sampled_ind]
hardness = hardness[sampled_ind]
gt_dist = gt_dist[sampled_ind]
done = True
# Compute distance from end node to all nodes, to return.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=end_node_id, target=None,
max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
hardnesss.append(hardness); dists.append(dist); pred_maps.append(pred_map);
start_node_ids_.append(start_node_id); end_node_ids.append(end_node_id);
gt_dists.append(gt_dist);
paths = None
return start_node_ids_, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
max_dist_to_compute, node_room_ids, nodes=None,
compute_path=False, dists_from_start_node=None):
# Compute the distance field from the starting location, and then pick a
# destination in another room if possible otherwise anywhere outside this
# room.
dists = []; pred_maps = []; paths = []; end_node_ids = [];
for i in range(batch_size):
room_id = node_room_ids[start_node_ids[i]]
# Compute distances.
if dists_from_start_node == None:
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
else:
dist = dists_from_start_node[i]
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
end_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
end_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
end_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
# Compute distance to this new goal for doing distance queries.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
end_node_ids.append(end_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
def rng_room_to_room(batch_size, gtG, rng, max_dist, max_dist_to_compute,
node_room_ids, nodes=None, compute_path=False):
# Sample one of the rooms, compute the distance field. Pick a destination in
# another room if possible otherwise anywhere outside this room.
dists = []; pred_maps = []; paths = []; start_node_ids = []; end_node_ids = [];
room_ids = np.unique(node_room_ids[node_room_ids[:,0] >= 0, 0])
for i in range(batch_size):
room_id = rng.choice(room_ids)
end_node_id = rng.choice(np.where(node_room_ids[:,0] == room_id)[0])
end_node_ids.append(end_node_id)
# Compute distances.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
start_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
start_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
start_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
start_node_ids.append(start_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
def rng_target_dist_field(batch_size, gtG, rng, max_dist, max_dist_to_compute,
nodes=None, compute_path=False):
# Sample a single node, compute distance to all nodes less than max_dist,
# sample nodes which are a particular distance away.
dists = []; pred_maps = []; paths = []; start_node_ids = []
end_node_ids = rng.choice(gtG.num_vertices(), size=(batch_size,),
replace=False).tolist()
for i in range(batch_size):
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
# Randomly sample nodes which are withing max_dist
near_ids = np.where(dist <= max_dist)[0]
start_node_id = rng.choice(near_ids, size=(1,), replace=False)[0]
start_node_ids.append(start_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths