forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_plot_trajectory.py
339 lines (288 loc) · 12.5 KB
/
script_plot_trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""
Code for plotting trajectories in the top view, and also plot first person views
from saved trajectories. Does not run the network but only loads the mesh data
to plot the view points.
CUDA_VISIBLE_DEVICES=0 LD_LIBRARY_PATH=/opt/cuda-8.0/lib64:/opt/cudnnv51/lib64
PYTHONPATH='.' PYOPENGL_PLATFORM=egl python scripts/script_plot_trajectory.py \
--first_person --num_steps 40 \
--config_name cmp.lmap_Msc.clip5.sbpd_d_r2r \
--imset test --alsologtostderr --base_dir output --out_dir vis
"""
import os, sys, numpy as np, copy
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.gridspec import GridSpec
import tensorflow as tf
from tensorflow.contrib import slim
import cv2
import logging
from tensorflow.python.platform import gfile
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from datasets import nav_env
import scripts.script_nav_agent_release as sna
import src.file_utils as fu
from src import graph_utils
from src import utils
FLAGS = flags.FLAGS
flags.DEFINE_string('out_dir', 'vis', 'Directory where to store the output')
flags.DEFINE_string('type', '', 'Optional type.')
flags.DEFINE_bool('first_person', False, 'Visualize the first person view.')
flags.DEFINE_bool('top_view', False, 'Visualize the trajectory in the top view.')
flags.DEFINE_integer('num_steps', 40, 'Number of steps to run the model for.')
flags.DEFINE_string('imset', 'test', '')
flags.DEFINE_string('base_dir', 'output', 'Cache directory.')
def _get_suffix_str():
return ''
def _load_trajectory():
base_dir = FLAGS.base_dir
config_name = FLAGS.config_name+_get_suffix_str()
dir_name = os.path.join(base_dir, FLAGS.type, config_name)
logging.info('Waiting for snapshot in directory %s.', dir_name)
last_checkpoint = slim.evaluation.wait_for_new_checkpoint(dir_name, None)
checkpoint_iter = int(os.path.basename(last_checkpoint).split('-')[1])
# Load the distances.
a = utils.load_variables(os.path.join(dir_name, 'bench_on_'+FLAGS.imset,
'all_locs_at_t_{:d}.pkl'.format(checkpoint_iter)))
return a
def _compute_hardness():
# Load the stanford data to compute the hardness.
if FLAGS.type == '':
args = sna.get_args_for_config(FLAGS.config_name+'+bench_'+FLAGS.imset)
else:
args = sna.get_args_for_config(FLAGS.type+'.'+FLAGS.config_name+'+bench_'+FLAGS.imset)
args.navtask.logdir = None
R = lambda: nav_env.get_multiplexer_class(args.navtask, 0)
R = R()
rng_data = [np.random.RandomState(0), np.random.RandomState(0)]
# Sample a room.
h_dists = []
gt_dists = []
for i in range(250):
e = R.sample_env(rng_data)
nodes = e.task.nodes
# Initialize the agent.
init_env_state = e.reset(rng_data)
gt_dist_to_goal = [e.episode.dist_to_goal[0][j][s]
for j, s in enumerate(e.episode.start_node_ids)]
for j in range(args.navtask.task_params.batch_size):
start_node_id = e.episode.start_node_ids[j]
end_node_id =e.episode.goal_node_ids[0][j]
h_dist = graph_utils.heuristic_fn_vec(
nodes[[start_node_id],:], nodes[[end_node_id], :],
n_ori=args.navtask.task_params.n_ori,
step_size=args.navtask.task_params.step_size)[0][0]
gt_dist = e.episode.dist_to_goal[0][j][start_node_id]
h_dists.append(h_dist)
gt_dists.append(gt_dist)
h_dists = np.array(h_dists)
gt_dists = np.array(gt_dists)
e = R.sample_env([np.random.RandomState(0), np.random.RandomState(0)])
input = e.get_common_data()
orig_maps = input['orig_maps'][0,0,:,:,0]
return h_dists, gt_dists, orig_maps
def plot_trajectory_first_person(dt, orig_maps, out_dir):
out_dir = os.path.join(out_dir, FLAGS.config_name+_get_suffix_str(),
FLAGS.imset)
fu.makedirs(out_dir)
# Load the model so that we can render.
plt.set_cmap('gray')
samples_per_action = 8; wait_at_action = 0;
Writer = animation.writers['mencoder']
writer = Writer(fps=3*(samples_per_action+wait_at_action),
metadata=dict(artist='anonymous'), bitrate=1800)
args = sna.get_args_for_config(FLAGS.config_name + '+bench_'+FLAGS.imset)
args.navtask.logdir = None
navtask_ = copy.deepcopy(args.navtask)
navtask_.camera_param.modalities = ['rgb']
navtask_.task_params.modalities = ['rgb']
sz = 512
navtask_.camera_param.height = sz
navtask_.camera_param.width = sz
navtask_.task_params.img_height = sz
navtask_.task_params.img_width = sz
R = lambda: nav_env.get_multiplexer_class(navtask_, 0)
R = R()
b = R.buildings[0]
f = [0 for _ in range(wait_at_action)] + \
[float(_)/samples_per_action for _ in range(samples_per_action)];
# Generate things for it to render.
inds_to_do = []
inds_to_do += [1, 4, 10] #1291, 1268, 1273, 1289, 1302, 1426, 1413, 1449, 1399, 1390]
for i in inds_to_do:
fig = plt.figure(figsize=(10,8))
gs = GridSpec(3,4)
gs.update(wspace=0.05, hspace=0.05, left=0.0, top=0.97, right=1.0, bottom=0.)
ax = fig.add_subplot(gs[:,:-1])
ax1 = fig.add_subplot(gs[0,-1])
ax2 = fig.add_subplot(gs[1,-1])
ax3 = fig.add_subplot(gs[2,-1])
axes = [ax, ax1, ax2, ax3]
# ax = fig.add_subplot(gs[:,:])
# axes = [ax]
for ax in axes:
ax.set_axis_off()
node_ids = dt['all_node_ids'][i, :, 0]*1
# Prune so that last node is not repeated more than 3 times?
if np.all(node_ids[-4:] == node_ids[-1]):
while node_ids[-4] == node_ids[-1]:
node_ids = node_ids[:-1]
num_steps = np.minimum(FLAGS.num_steps, len(node_ids))
xyt = b.to_actual_xyt_vec(b.task.nodes[node_ids])
xyt_diff = xyt[1:,:] - xyt[:-1:,:]
xyt_diff[:,2] = np.mod(xyt_diff[:,2], 4)
ind = np.where(xyt_diff[:,2] == 3)[0]
xyt_diff[ind, 2] = -1
xyt_diff = np.expand_dims(xyt_diff, axis=1)
to_cat = [xyt_diff*_ for _ in f]
perturbs_all = np.concatenate(to_cat, axis=1)
perturbs_all = np.concatenate([perturbs_all, np.zeros_like(perturbs_all[:,:,:1])], axis=2)
node_ids_all = np.expand_dims(node_ids, axis=1)*1
node_ids_all = np.concatenate([node_ids_all for _ in f], axis=1)
node_ids_all = np.reshape(node_ids_all[:-1,:], -1)
perturbs_all = np.reshape(perturbs_all, [-1, 4])
imgs = b.render_nodes(b.task.nodes[node_ids_all,:], perturb=perturbs_all)
# Get action at each node.
actions = []
_, action_to_nodes = b.get_feasible_actions(node_ids)
for j in range(num_steps-1):
action_to_node = action_to_nodes[j]
node_to_action = dict(zip(action_to_node.values(), action_to_node.keys()))
actions.append(node_to_action[node_ids[j+1]])
def init_fn():
return fig,
gt_dist_to_goal = []
# Render trajectories.
def worker(j):
# Plot the image.
step_number = j/(samples_per_action + wait_at_action)
img = imgs[j]; ax = axes[0]; ax.clear(); ax.set_axis_off();
img = img.astype(np.uint8); ax.imshow(img);
tt = ax.set_title(
"First Person View\n" +
"Top corners show diagnostics (distance, agents' action) not input to agent.",
fontsize=12)
plt.setp(tt, color='white')
# Distance to goal.
t = 'Dist to Goal:\n{:2d} steps'.format(int(dt['all_d_at_t'][i, step_number]))
t = ax.text(0.01, 0.99, t,
horizontalalignment='left',
verticalalignment='top',
fontsize=20, color='red',
transform=ax.transAxes, alpha=1.0)
t.set_bbox(dict(color='white', alpha=0.85, pad=-0.1))
# Action to take.
action_latex = ['$\odot$ ', '$\curvearrowright$ ', '$\curvearrowleft$ ', r'$\Uparrow$ ']
t = ax.text(0.99, 0.99, action_latex[actions[step_number]],
horizontalalignment='right',
verticalalignment='top',
fontsize=40, color='green',
transform=ax.transAxes, alpha=1.0)
t.set_bbox(dict(color='white', alpha=0.85, pad=-0.1))
# Plot the map top view.
ax = axes[-1]
if j == 0:
# Plot the map
locs = dt['all_locs'][i,:num_steps,:]
goal_loc = dt['all_goal_locs'][i,:,:]
xymin = np.minimum(np.min(goal_loc, axis=0), np.min(locs, axis=0))
xymax = np.maximum(np.max(goal_loc, axis=0), np.max(locs, axis=0))
xy1 = (xymax+xymin)/2. - 0.7*np.maximum(np.max(xymax-xymin), 24)
xy2 = (xymax+xymin)/2. + 0.7*np.maximum(np.max(xymax-xymin), 24)
ax.set_axis_on()
ax.patch.set_facecolor((0.333, 0.333, 0.333))
ax.set_xticks([]); ax.set_yticks([]);
ax.imshow(orig_maps, origin='lower', vmin=-1.0, vmax=2.0)
ax.plot(goal_loc[:,0], goal_loc[:,1], 'g*', markersize=12)
locs = dt['all_locs'][i,:1,:]
ax.plot(locs[:,0], locs[:,1], 'b.', markersize=12)
ax.set_xlim([xy1[0], xy2[0]])
ax.set_ylim([xy1[1], xy2[1]])
locs = dt['all_locs'][i,step_number,:]
locs = np.expand_dims(locs, axis=0)
ax.plot(locs[:,0], locs[:,1], 'r.', alpha=1.0, linewidth=0, markersize=4)
tt = ax.set_title('Trajectory in topview', fontsize=14)
plt.setp(tt, color='white')
return fig,
line_ani = animation.FuncAnimation(fig, worker,
(num_steps-1)*(wait_at_action+samples_per_action),
interval=500, blit=True, init_func=init_fn)
tmp_file_name = 'tmp.mp4'
line_ani.save(tmp_file_name, writer=writer, savefig_kwargs={'facecolor':'black'})
out_file_name = os.path.join(out_dir, 'vis_{:04d}.mp4'.format(i))
print(out_file_name)
if fu.exists(out_file_name):
gfile.Remove(out_file_name)
gfile.Copy(tmp_file_name, out_file_name)
gfile.Remove(tmp_file_name)
plt.close(fig)
def plot_trajectory(dt, hardness, orig_maps, out_dir):
out_dir = os.path.join(out_dir, FLAGS.config_name+_get_suffix_str(),
FLAGS.imset)
fu.makedirs(out_dir)
out_file = os.path.join(out_dir, 'all_locs_at_t.pkl')
dt['hardness'] = hardness
utils.save_variables(out_file, dt.values(), dt.keys(), overwrite=True)
#Plot trajectories onto the maps
plt.set_cmap('gray')
for i in range(4000):
goal_loc = dt['all_goal_locs'][i, :, :]
locs = np.concatenate((dt['all_locs'][i,:,:],
dt['all_locs'][i,:,:]), axis=0)
xymin = np.minimum(np.min(goal_loc, axis=0), np.min(locs, axis=0))
xymax = np.maximum(np.max(goal_loc, axis=0), np.max(locs, axis=0))
xy1 = (xymax+xymin)/2. - 1.*np.maximum(np.max(xymax-xymin), 24)
xy2 = (xymax+xymin)/2. + 1.*np.maximum(np.max(xymax-xymin), 24)
fig, ax = utils.tight_imshow_figure(plt, figsize=(6,6))
ax.set_axis_on()
ax.patch.set_facecolor((0.333, 0.333, 0.333))
ax.set_xticks([])
ax.set_yticks([])
all_locs = dt['all_locs'][i,:,:]*1
uniq = np.where(np.any(all_locs[1:,:] != all_locs[:-1,:], axis=1))[0]+1
uniq = np.sort(uniq).tolist()
uniq.insert(0,0)
uniq = np.array(uniq)
all_locs = all_locs[uniq, :]
ax.plot(dt['all_locs'][i, 0, 0],
dt['all_locs'][i, 0, 1], 'b.', markersize=24)
ax.plot(dt['all_goal_locs'][i, 0, 0],
dt['all_goal_locs'][i, 0, 1], 'g*', markersize=19)
ax.plot(all_locs[:,0], all_locs[:,1], 'r', alpha=0.4, linewidth=2)
ax.scatter(all_locs[:,0], all_locs[:,1],
c=5+np.arange(all_locs.shape[0])*1./all_locs.shape[0],
cmap='Reds', s=30, linewidth=0)
ax.imshow(orig_maps, origin='lower', vmin=-1.0, vmax=2.0, aspect='equal')
ax.set_xlim([xy1[0], xy2[0]])
ax.set_ylim([xy1[1], xy2[1]])
file_name = os.path.join(out_dir, 'trajectory_{:04d}.png'.format(i))
print(file_name)
with fu.fopen(file_name, 'w') as f:
plt.savefig(f)
plt.close(fig)
def main(_):
a = _load_trajectory()
h_dists, gt_dists, orig_maps = _compute_hardness()
hardness = 1.-h_dists*1./ gt_dists
if FLAGS.top_view:
plot_trajectory(a, hardness, orig_maps, out_dir=FLAGS.out_dir)
if FLAGS.first_person:
plot_trajectory_first_person(a, orig_maps, out_dir=FLAGS.out_dir)
if __name__ == '__main__':
app.run()