forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnav_env_config.py
127 lines (115 loc) · 4.85 KB
/
nav_env_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configs for stanford navigation environment.
Base config for stanford navigation enviornment.
"""
import numpy as np
import src.utils as utils
import datasets.nav_env as nav_env
def nav_env_base_config():
"""Returns the base config for stanford navigation environment.
Returns:
Base config for stanford navigation environment.
"""
robot = utils.Foo(radius=15,
base=10,
height=140,
sensor_height=120,
camera_elevation_degree=-15)
env = utils.Foo(padding=10,
resolution=5,
num_point_threshold=2,
valid_min=-10,
valid_max=200,
n_samples_per_face=200)
camera_param = utils.Foo(width=225,
height=225,
z_near=0.05,
z_far=20.0,
fov=60.,
modalities=['rgb'],
img_channels=3)
data_augment = utils.Foo(lr_flip=0,
delta_angle=0.5,
delta_xy=4,
relight=True,
relight_fast=False,
structured=False) # if True, uses the same perturb for the whole episode.
outputs = utils.Foo(images=True,
rel_goal_loc=False,
loc_on_map=True,
gt_dist_to_goal=True,
ego_maps=False,
ego_goal_imgs=False,
egomotion=False,
visit_count=False,
analytical_counts=False,
node_ids=True,
readout_maps=False)
# class_map_names=['board', 'chair', 'door', 'sofa', 'table']
class_map_names = ['chair', 'door', 'table']
semantic_task = utils.Foo(class_map_names=class_map_names, pix_distance=16,
sampling='uniform')
# time per iteration for cmp is 0.82 seconds per episode with 3.4s overhead per batch.
task_params = utils.Foo(max_dist=32,
step_size=8,
num_steps=40,
num_actions=4,
batch_size=4,
building_seed=0,
num_goals=1,
img_height=None,
img_width=None,
img_channels=None,
modalities=None,
outputs=outputs,
map_scales=[1.],
map_crop_sizes=[64],
rel_goal_loc_dim=4,
base_class='Building',
task='map+plan',
n_ori=4,
type='room_to_room_many',
data_augment=data_augment,
room_regex='^((?!hallway).)*$',
toy_problem=False,
map_channels=1,
gt_coverage=False,
input_type='maps',
full_information=False,
aux_delta_thetas=[],
semantic_task=semantic_task,
num_history_frames=0,
node_ids_dim=1,
perturbs_dim=4,
map_resize_method='linear_noantialiasing',
readout_maps_channels=1,
readout_maps_scales=[],
readout_maps_crop_sizes=[],
n_views=1,
reward_time_penalty=0.1,
reward_at_goal=1.,
discount_factor=0.99,
rejection_sampling_M=100,
min_dist=None)
navtask_args = utils.Foo(
building_names=['area1_gates_wingA_floor1_westpart'],
env_class=nav_env.VisualNavigationEnv,
robot=robot,
task_params=task_params,
env=env,
camera_param=camera_param,
cache_rooms=True)
return navtask_args