forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnav_env.py
1465 lines (1301 loc) · 62.4 KB
/
nav_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Navidation Environment. Includes the following classes along with some
helper functions.
Building: Loads buildings, computes traversibility, exposes functionality for
rendering images.
GridWorld: Base class which implements functionality for moving an agent on a
grid world.
NavigationEnv: Base class which generates navigation problems on a grid world.
VisualNavigationEnv: Builds upon NavigationEnv and Building to provide
interface that is used externally to train the agent.
MeshMapper: Class used for distilling the model, testing the mapper.
BuildingMultiplexer: Wrapper class that instantiates a VisualNavigationEnv for
each building and multiplexes between them as needed.
"""
import numpy as np
import os
import re
import matplotlib.pyplot as plt
import graph_tool as gt
import graph_tool.topology
from tensorflow.python.platform import gfile
import logging
import src.file_utils as fu
import src.utils as utils
import src.graph_utils as gu
import src.map_utils as mu
import src.depth_utils as du
import render.swiftshader_renderer as sru
from render.swiftshader_renderer import SwiftshaderRenderer
import cv2
label_nodes_with_class = gu.label_nodes_with_class
label_nodes_with_class_geodesic = gu.label_nodes_with_class_geodesic
get_distance_node_list = gu.get_distance_node_list
convert_to_graph_tool = gu.convert_to_graph_tool
generate_graph = gu.generate_graph
get_hardness_distribution = gu.get_hardness_distribution
rng_next_goal_rejection_sampling = gu.rng_next_goal_rejection_sampling
rng_next_goal = gu.rng_next_goal
rng_room_to_room = gu.rng_room_to_room
rng_target_dist_field = gu.rng_target_dist_field
compute_traversibility = mu.compute_traversibility
make_map = mu.make_map
resize_maps = mu.resize_maps
pick_largest_cc = mu.pick_largest_cc
get_graph_origin_loc = mu.get_graph_origin_loc
generate_egocentric_maps = mu.generate_egocentric_maps
generate_goal_images = mu.generate_goal_images
get_map_to_predict = mu.get_map_to_predict
bin_points = du.bin_points
make_geocentric = du.make_geocentric
get_point_cloud_from_z = du.get_point_cloud_from_z
get_camera_matrix = du.get_camera_matrix
def _get_semantic_maps(folder_name, building_name, map, flip):
# Load file from the cache.
file_name = '{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.pkl'
file_name = file_name.format(building_name, map.size[0], map.size[1],
map.origin[0], map.origin[1], map.resolution,
flip)
file_name = os.path.join(folder_name, file_name)
logging.info('Loading semantic maps from %s.', file_name)
if fu.exists(file_name):
a = utils.load_variables(file_name)
maps = a['maps'] #HxWx#C
cats = a['cats']
else:
logging.error('file_name: %s not found.', file_name)
maps = None
cats = None
return maps, cats
def _select_classes(all_maps, all_cats, cats_to_use):
inds = []
for c in cats_to_use:
ind = all_cats.index(c)
inds.append(ind)
out_maps = all_maps[:,:,inds]
return out_maps
def _get_room_dimensions(file_name, resolution, origin, flip=False):
if fu.exists(file_name):
a = utils.load_variables(file_name)['room_dimension']
names = a.keys()
dims = np.concatenate(a.values(), axis=0).reshape((-1,6))
ind = np.argsort(names)
dims = dims[ind,:]
names = [names[x] for x in ind]
if flip:
dims_new = dims*1
dims_new[:,1] = -dims[:,4]
dims_new[:,4] = -dims[:,1]
dims = dims_new*1
dims = dims*100.
dims[:,0] = dims[:,0] - origin[0]
dims[:,1] = dims[:,1] - origin[1]
dims[:,3] = dims[:,3] - origin[0]
dims[:,4] = dims[:,4] - origin[1]
dims = dims / resolution
out = {'names': names, 'dims': dims}
else:
out = None
return out
def _filter_rooms(room_dims, room_regex):
pattern = re.compile(room_regex)
ind = []
for i, name in enumerate(room_dims['names']):
if pattern.match(name):
ind.append(i)
new_room_dims = {}
new_room_dims['names'] = [room_dims['names'][i] for i in ind]
new_room_dims['dims'] = room_dims['dims'][ind,:]*1
return new_room_dims
def _label_nodes_with_room_id(xyt, room_dims):
# Label the room with the ID into things.
node_room_id = -1*np.ones((xyt.shape[0], 1))
dims = room_dims['dims']
for x, name in enumerate(room_dims['names']):
all_ = np.concatenate((xyt[:,[0]] >= dims[x,0],
xyt[:,[0]] <= dims[x,3],
xyt[:,[1]] >= dims[x,1],
xyt[:,[1]] <= dims[x,4]), axis=1)
node_room_id[np.all(all_, axis=1), 0] = x
return node_room_id
def get_path_ids(start_node_id, end_node_id, pred_map):
id = start_node_id
path = [id]
while id != end_node_id:
id = pred_map[id]
path.append(id)
return path
def image_pre(images, modalities):
# Assumes images are ...xHxWxC.
# We always assume images are RGB followed by Depth.
if 'depth' in modalities:
d = images[...,-1][...,np.newaxis]*1.
d[d < 0.01] = np.NaN; isnan = np.isnan(d);
d = 100./d; d[isnan] = 0.;
images = np.concatenate((images[...,:-1], d, isnan), axis=images.ndim-1)
if 'rgb' in modalities:
images[...,:3] = images[...,:3]*1. - 128
return images
def _get_relative_goal_loc(goal_loc, loc, theta):
r = np.sqrt(np.sum(np.square(goal_loc - loc), axis=1))
t = np.arctan2(goal_loc[:,1] - loc[:,1], goal_loc[:,0] - loc[:,0])
t = t-theta[:,0] + np.pi/2
return np.expand_dims(r,axis=1), np.expand_dims(t, axis=1)
def _gen_perturbs(rng, batch_size, num_steps, lr_flip, delta_angle, delta_xy,
structured):
perturbs = []
for i in range(batch_size):
# Doing things one by one for each episode in this batch. This way this
# remains replicatable even when we change the batch size.
p = np.zeros((num_steps+1, 4))
if lr_flip:
# Flip the whole trajectory.
p[:,3] = rng.rand(1)-0.5
if delta_angle > 0:
if structured:
p[:,2] = (rng.rand(1)-0.5)* delta_angle
else:
p[:,2] = (rng.rand(p.shape[0])-0.5)* delta_angle
if delta_xy > 0:
if structured:
p[:,:2] = (rng.rand(1, 2)-0.5)*delta_xy
else:
p[:,:2] = (rng.rand(p.shape[0], 2)-0.5)*delta_xy
perturbs.append(p)
return perturbs
def get_multiplexer_class(args, task_number):
assert(args.task_params.base_class == 'Building')
logging.info('Returning BuildingMultiplexer')
R = BuildingMultiplexer(args, task_number)
return R
class GridWorld():
def __init__(self):
"""Class members that will be assigned by any class that actually uses this
class."""
self.restrict_to_largest_cc = None
self.robot = None
self.env = None
self.category_list = None
self.traversible = None
def get_loc_axis(self, node, delta_theta, perturb=None):
"""Based on the node orientation returns X, and Y axis. Used to sample the
map in egocentric coordinate frame.
"""
if type(node) == tuple:
node = np.array([node])
if perturb is None:
perturb = np.zeros((node.shape[0], 4))
xyt = self.to_actual_xyt_vec(node)
x = xyt[:,[0]] + perturb[:,[0]]
y = xyt[:,[1]] + perturb[:,[1]]
t = xyt[:,[2]] + perturb[:,[2]]
theta = t*delta_theta
loc = np.concatenate((x,y), axis=1)
x_axis = np.concatenate((np.cos(theta), np.sin(theta)), axis=1)
y_axis = np.concatenate((np.cos(theta+np.pi/2.), np.sin(theta+np.pi/2.)),
axis=1)
# Flip the sampled map where need be.
y_axis[np.where(perturb[:,3] > 0)[0], :] *= -1.
return loc, x_axis, y_axis, theta
def to_actual_xyt(self, pqr):
"""Converts from node to location on the map."""
(p, q, r) = pqr
if self.task.n_ori == 6:
out = (p - q * 0.5 + self.task.origin_loc[0],
q * np.sqrt(3.) / 2. + self.task.origin_loc[1], r)
elif self.task.n_ori == 4:
out = (p + self.task.origin_loc[0],
q + self.task.origin_loc[1], r)
return out
def to_actual_xyt_vec(self, pqr):
"""Converts from node array to location array on the map."""
p = pqr[:,0][:, np.newaxis]
q = pqr[:,1][:, np.newaxis]
r = pqr[:,2][:, np.newaxis]
if self.task.n_ori == 6:
out = np.concatenate((p - q * 0.5 + self.task.origin_loc[0],
q * np.sqrt(3.) / 2. + self.task.origin_loc[1],
r), axis=1)
elif self.task.n_ori == 4:
out = np.concatenate((p + self.task.origin_loc[0],
q + self.task.origin_loc[1],
r), axis=1)
return out
def raw_valid_fn_vec(self, xyt):
"""Returns if the given set of nodes is valid or not."""
height = self.traversible.shape[0]
width = self.traversible.shape[1]
x = np.round(xyt[:,[0]]).astype(np.int32)
y = np.round(xyt[:,[1]]).astype(np.int32)
is_inside = np.all(np.concatenate((x >= 0, y >= 0,
x < width, y < height), axis=1), axis=1)
x = np.minimum(np.maximum(x, 0), width-1)
y = np.minimum(np.maximum(y, 0), height-1)
ind = np.ravel_multi_index((y,x), self.traversible.shape)
is_traversible = self.traversible.ravel()[ind]
is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
axis=1), axis=1)
return is_valid
def valid_fn_vec(self, pqr):
"""Returns if the given set of nodes is valid or not."""
xyt = self.to_actual_xyt_vec(np.array(pqr))
height = self.traversible.shape[0]
width = self.traversible.shape[1]
x = np.round(xyt[:,[0]]).astype(np.int32)
y = np.round(xyt[:,[1]]).astype(np.int32)
is_inside = np.all(np.concatenate((x >= 0, y >= 0,
x < width, y < height), axis=1), axis=1)
x = np.minimum(np.maximum(x, 0), width-1)
y = np.minimum(np.maximum(y, 0), height-1)
ind = np.ravel_multi_index((y,x), self.traversible.shape)
is_traversible = self.traversible.ravel()[ind]
is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
axis=1), axis=1)
return is_valid
def get_feasible_actions(self, node_ids):
"""Returns the feasible set of actions from the current node."""
a = np.zeros((len(node_ids), self.task_params.num_actions), dtype=np.int32)
gtG = self.task.gtG
next_node = []
for i, c in enumerate(node_ids):
neigh = gtG.vertex(c).out_neighbours()
neigh_edge = gtG.vertex(c).out_edges()
nn = {}
for n, e in zip(neigh, neigh_edge):
_ = gtG.ep['action'][e]
a[i,_] = 1
nn[_] = int(n)
next_node.append(nn)
return a, next_node
def take_action(self, current_node_ids, action):
"""Returns the new node after taking the action action. Stays at the current
node if the action is invalid."""
actions, next_node_ids = self.get_feasible_actions(current_node_ids)
new_node_ids = []
for i, (c,a) in enumerate(zip(current_node_ids, action)):
if actions[i,a] == 1:
new_node_ids.append(next_node_ids[i][a])
else:
new_node_ids.append(c)
return new_node_ids
def set_r_obj(self, r_obj):
"""Sets the SwiftshaderRenderer object used for rendering."""
self.r_obj = r_obj
class Building(GridWorld):
def __init__(self, building_name, robot, env,
category_list=None, small=False, flip=False, logdir=None,
building_loader=None):
self.restrict_to_largest_cc = True
self.robot = robot
self.env = env
self.logdir = logdir
# Load the building meta data.
building = building_loader.load_building(building_name)
if small:
building['mesh_names'] = building['mesh_names'][:5]
# New code.
shapess = building_loader.load_building_meshes(building)
if flip:
for shapes in shapess:
shapes.flip_shape()
vs = []
for shapes in shapess:
vs.append(shapes.get_vertices()[0])
vs = np.concatenate(vs, axis=0)
map = make_map(env.padding, env.resolution, vertex=vs, sc=100.)
map = compute_traversibility(
map, robot.base, robot.height, robot.radius, env.valid_min,
env.valid_max, env.num_point_threshold, shapess=shapess, sc=100.,
n_samples_per_face=env.n_samples_per_face)
room_dims = _get_room_dimensions(building['room_dimension_file'],
env.resolution, map.origin, flip=flip)
class_maps, class_map_names = _get_semantic_maps(
building['class_map_folder'], building_name, map, flip)
self.class_maps = class_maps
self.class_map_names = class_map_names
self.building = building
self.shapess = shapess
self.map = map
self.traversible = map.traversible*1
self.building_name = building_name
self.room_dims = room_dims
self.flipped = flip
self.renderer_entitiy_ids = []
if self.restrict_to_largest_cc:
self.traversible = pick_largest_cc(self.traversible)
def load_building_into_scene(self):
# Loads the scene.
self.renderer_entitiy_ids += self.r_obj.load_shapes(self.shapess)
# Free up memory, we dont need the mesh or the materials anymore.
self.shapess = None
def add_entity_at_nodes(self, nodes, height, shape):
xyt = self.to_actual_xyt_vec(nodes)
nxy = xyt[:,:2]*1.
nxy = nxy * self.map.resolution
nxy = nxy + self.map.origin
Ts = np.concatenate((nxy, nxy[:,:1]), axis=1)
Ts[:,2] = height; Ts = Ts / 100.;
# Merge all the shapes into a single shape and add that shape.
shape.replicate_shape(Ts)
entity_ids = self.r_obj.load_shapes([shape])
self.renderer_entitiy_ids += entity_ids
return entity_ids
def add_shapes(self, shapes):
scene = self.r_obj.viz.scene()
for shape in shapes:
scene.AddShape(shape)
def add_materials(self, materials):
scene = self.r_obj.viz.scene()
for material in materials:
scene.AddOrUpdateMaterial(material)
def set_building_visibility(self, visibility):
self.r_obj.set_entity_visible(self.renderer_entitiy_ids, visibility)
def render_nodes(self, nodes, perturb=None, aux_delta_theta=0.):
self.set_building_visibility(True)
if perturb is None:
perturb = np.zeros((len(nodes), 4))
imgs = []
r = 2
elevation_z = r * np.tan(np.deg2rad(self.robot.camera_elevation_degree))
for i in range(len(nodes)):
xyt = self.to_actual_xyt(nodes[i])
lookat_theta = 3.0 * np.pi / 2.0 - (xyt[2]+perturb[i,2]+aux_delta_theta) * (self.task.delta_theta)
nxy = np.array([xyt[0]+perturb[i,0], xyt[1]+perturb[i,1]]).reshape(1, -1)
nxy = nxy * self.map.resolution
nxy = nxy + self.map.origin
camera_xyz = np.zeros((1, 3))
camera_xyz[...] = [nxy[0, 0], nxy[0, 1], self.robot.sensor_height]
camera_xyz = camera_xyz / 100.
lookat_xyz = np.array([-r * np.sin(lookat_theta),
-r * np.cos(lookat_theta), elevation_z])
lookat_xyz = lookat_xyz + camera_xyz[0, :]
self.r_obj.position_camera(camera_xyz[0, :].tolist(),
lookat_xyz.tolist(), [0.0, 0.0, 1.0])
img = self.r_obj.render(take_screenshot=True, output_type=0)
img = [x for x in img if x is not None]
img = np.concatenate(img, axis=2).astype(np.float32)
if perturb[i,3]>0:
img = img[:,::-1,:]
imgs.append(img)
self.set_building_visibility(False)
return imgs
class MeshMapper(Building):
def __init__(self, robot, env, task_params, building_name, category_list,
flip, logdir=None, building_loader=None):
Building.__init__(self, building_name, robot, env, category_list,
small=task_params.toy_problem, flip=flip, logdir=logdir,
building_loader=building_loader)
self.task_params = task_params
self.task = None
self._preprocess_for_task(self.task_params.building_seed)
def _preprocess_for_task(self, seed):
if self.task is None or self.task.seed != seed:
rng = np.random.RandomState(seed)
origin_loc = get_graph_origin_loc(rng, self.traversible)
self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
n_ori=self.task_params.n_ori)
G = generate_graph(self.valid_fn_vec,
self.task_params.step_size, self.task.n_ori,
(0, 0, 0))
gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
self.task.gtG = gtG
self.task.nodes = nodes
self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
self.task.nodes_to_id = nodes_to_id
logging.info('Building %s, #V=%d, #E=%d', self.building_name,
self.task.nodes.shape[0], self.task.gtG.num_edges())
if self.logdir is not None:
write_traversible = cv2.applyColorMap(self.traversible.astype(np.uint8)*255, cv2.COLORMAP_JET)
img_path = os.path.join(self.logdir,
'{:s}_{:d}_graph.png'.format(self.building_name,
seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.imshow(self.traversible, origin='lower');
ax.set_axis_off(); ax.axis('equal');
ax.set_title('{:s}, {:d}, {:d}'.format(self.building_name,
self.task.nodes.shape[0],
self.task.gtG.num_edges()))
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _gen_rng(self, rng):
# instances is a list of list of node_ids.
if self.task_params.move_type == 'circle':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng, 0, 1,
compute_path=True)
instances_ = paths
instances = []
for instance_ in instances_:
instance = instance_
for i in range(self.task_params.num_steps):
instance.append(self.take_action([instance[-1]], [1])[0])
instances.append(instance)
elif self.task_params.move_type == 'shortest_path':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng,
self.task_params.num_steps,
self.task_params.num_steps+1,
compute_path=True)
instances = paths
elif self.task_params.move_type == 'circle+forward':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng, 0, 1,
compute_path=True)
instances_ = paths
instances = []
for instance_ in instances_:
instance = instance_
for i in range(self.task_params.n_ori-1):
instance.append(self.take_action([instance[-1]], [1])[0])
while len(instance) <= self.task_params.num_steps:
while self.take_action([instance[-1]], [3])[0] == instance[-1] and len(instance) <= self.task_params.num_steps:
instance.append(self.take_action([instance[-1]], [2])[0])
if len(instance) <= self.task_params.num_steps:
instance.append(self.take_action([instance[-1]], [3])[0])
instances.append(instance)
# Do random perturbation if needed.
perturbs = _gen_perturbs(rng, self.task_params.batch_size,
self.task_params.num_steps,
self.task_params.data_augment.lr_flip,
self.task_params.data_augment.delta_angle,
self.task_params.data_augment.delta_xy,
self.task_params.data_augment.structured)
return instances, perturbs
def worker(self, instances, perturbs):
# Output the images and the free space.
# Make the instances be all the same length.
for i in range(len(instances)):
for j in range(self.task_params.num_steps - len(instances[i]) + 1):
instances[i].append(instances[i][-1])
if perturbs[i].shape[0] < self.task_params.num_steps+1:
p = np.zeros((self.task_params.num_steps+1, 4))
p[:perturbs[i].shape[0], :] = perturbs[i]
p[perturbs[i].shape[0]:, :] = perturbs[i][-1,:]
perturbs[i] = p
instances_ = []
for instance in instances:
instances_ = instances_ + instance
perturbs_ = np.concatenate(perturbs, axis=0)
instances_nodes = self.task.nodes[instances_,:]
instances_nodes = [tuple(x) for x in instances_nodes]
imgs_ = self.render_nodes(instances_nodes, perturbs_)
imgs = []; next = 0;
for instance in instances:
img_i = []
for _ in instance:
img_i.append(imgs_[next])
next = next+1
imgs.append(img_i)
imgs = np.array(imgs)
# Render out the maps in the egocentric view for all nodes and not just the
# last node.
all_nodes = []
for x in instances:
all_nodes = all_nodes + x
all_perturbs = np.concatenate(perturbs, axis=0)
loc, x_axis, y_axis, theta = self.get_loc_axis(
self.task.nodes[all_nodes, :]*1, delta_theta=self.task.delta_theta,
perturb=all_perturbs)
fss = None
valids = None
loc_on_map = None
theta_on_map = None
cum_fs = None
cum_valid = None
incremental_locs = None
incremental_thetas = None
if self.task_params.output_free_space:
fss, valids = get_map_to_predict(loc, x_axis, y_axis,
map=self.traversible*1.,
map_size=self.task_params.map_size)
fss = np.array(fss) > 0.5
fss = np.reshape(fss, [self.task_params.batch_size,
self.task_params.num_steps+1,
self.task_params.map_size,
self.task_params.map_size])
valids = np.reshape(np.array(valids), fss.shape)
if self.task_params.output_transform_to_global_map:
# Output the transform to the global map.
loc_on_map = np.reshape(loc*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
# Converting to location wrt to first location so that warping happens
# properly.
theta_on_map = np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
if self.task_params.output_incremental_transform:
# Output the transform to the global map.
incremental_locs_ = np.reshape(loc*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
incremental_locs_[:,1:,:] -= incremental_locs_[:,:-1,:]
t0 = -np.pi/2+np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
t = t0*1
incremental_locs = incremental_locs_*1
incremental_locs[:,:,0] = np.sum(incremental_locs_ * np.concatenate((np.cos(t), np.sin(t)), axis=-1), axis=-1)
incremental_locs[:,:,1] = np.sum(incremental_locs_ * np.concatenate((np.cos(t+np.pi/2), np.sin(t+np.pi/2)), axis=-1), axis=-1)
incremental_locs[:,0,:] = incremental_locs_[:,0,:]
# print incremental_locs_[0,:,:], incremental_locs[0,:,:], t0[0,:,:]
incremental_thetas = np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1,
-1])
incremental_thetas[:,1:,:] += -incremental_thetas[:,:-1,:]
if self.task_params.output_canonical_map:
loc_ = loc[0::(self.task_params.num_steps+1), :]
x_axis = np.zeros_like(loc_); x_axis[:,1] = 1
y_axis = np.zeros_like(loc_); y_axis[:,0] = -1
cum_fs, cum_valid = get_map_to_predict(loc_, x_axis, y_axis,
map=self.traversible*1.,
map_size=self.task_params.map_size)
cum_fs = np.array(cum_fs) > 0.5
cum_fs = np.reshape(cum_fs, [self.task_params.batch_size, 1,
self.task_params.map_size,
self.task_params.map_size])
cum_valid = np.reshape(np.array(cum_valid), cum_fs.shape)
inputs = {'fs_maps': fss,
'valid_maps': valids,
'imgs': imgs,
'loc_on_map': loc_on_map,
'theta_on_map': theta_on_map,
'cum_fs_maps': cum_fs,
'cum_valid_maps': cum_valid,
'incremental_thetas': incremental_thetas,
'incremental_locs': incremental_locs}
return inputs
def pre(self, inputs):
inputs['imgs'] = image_pre(inputs['imgs'], self.task_params.modalities)
if inputs['loc_on_map'] is not None:
inputs['loc_on_map'] = inputs['loc_on_map'] - inputs['loc_on_map'][:,[0],:]
if inputs['theta_on_map'] is not None:
inputs['theta_on_map'] = np.pi/2. - inputs['theta_on_map']
return inputs
def _nav_env_reset_helper(type, rng, nodes, batch_size, gtG, max_dist,
num_steps, num_goals, data_augment, **kwargs):
"""Generates and returns a new episode."""
max_compute = max_dist + 4*num_steps
if type == 'general':
start_node_ids, end_node_ids, dist, pred_map, paths = \
rng_target_dist_field(batch_size, gtG, rng, max_dist, max_compute,
nodes=nodes, compute_path=False)
target_class = None
elif type == 'room_to_room_many':
goal_node_ids = []; dists = [];
node_room_ids = kwargs['node_room_ids']
# Sample the first one
start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
batch_size, gtG, rng, max_dist, max_compute,
node_room_ids=node_room_ids, nodes=nodes)
start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
for n in range(num_goals-1):
start_node_ids_, end_node_ids_, dist_, _, _ = rng_next_goal(
goal_node_ids[n], batch_size, gtG, rng, max_dist,
max_compute, node_room_ids=node_room_ids, nodes=nodes,
dists_from_start_node=dists[n])
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
target_class = None
elif type == 'rng_rejection_sampling_many':
num_goals = num_goals
goal_node_ids = []; dists = [];
n_ori = kwargs['n_ori']
step_size = kwargs['step_size']
min_dist = kwargs['min_dist']
sampling_distribution = kwargs['sampling_distribution']
target_distribution = kwargs['target_distribution']
rejection_sampling_M = kwargs['rejection_sampling_M']
distribution_bins = kwargs['distribution_bins']
for n in range(num_goals):
if n == 0: input_nodes = None
else: input_nodes = goal_node_ids[n-1]
start_node_ids_, end_node_ids_, dist_, _, _, _, _ = rng_next_goal_rejection_sampling(
input_nodes, batch_size, gtG, rng, max_dist, min_dist,
max_compute, sampling_distribution, target_distribution, nodes,
n_ori, step_size, distribution_bins, rejection_sampling_M)
if n == 0: start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
target_class = None
elif type == 'room_to_room_back':
num_goals = num_goals
assert(num_goals == 2), 'num_goals must be 2.'
goal_node_ids = []; dists = [];
node_room_ids = kwargs['node_room_ids']
# Sample the first one.
start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
batch_size, gtG, rng, max_dist, max_compute,
node_room_ids=node_room_ids, nodes=nodes)
start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
# Set second goal to be starting position, and compute distance to the start node.
goal_node_ids.append(start_node_ids)
dist = []
for i in range(batch_size):
dist_ = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True),
source=gtG.vertex(start_node_ids[i]), target=None)
dist_ = np.array(dist_.get_array())
dist.append(dist_)
dists.append(dist)
target_class = None
elif type[:14] == 'to_nearest_obj':
# Generate an episode by sampling one of the target classes (with
# probability proportional to the number of nodes in the world).
# With the sampled class sample a node that is within some distance from
# the sampled class.
class_nodes = kwargs['class_nodes']
sampling = kwargs['sampling']
dist_to_class = kwargs['dist_to_class']
assert(num_goals == 1), 'Only supports a single goal.'
ind = rng.choice(class_nodes.shape[0], size=batch_size)
target_class = class_nodes[ind,1]
start_node_ids = []; dists = []; goal_node_ids = [];
for t in target_class:
if sampling == 'uniform':
max_dist = max_dist
cnts = np.bincount(dist_to_class[t], minlength=max_dist+1)*1.
cnts[max_dist+1:] = 0
p_each = 1./ cnts / (max_dist+1.)
p_each[cnts == 0] = 0
p = p_each[dist_to_class[t]]*1.; p = p/np.sum(p)
start_node_id = rng.choice(p.shape[0], size=1, p=p)[0]
else:
logging.fatal('Sampling not one of uniform.')
start_node_ids.append(start_node_id)
dists.append(dist_to_class[t])
# Dummy goal node, same as the start node, so that vis is better.
goal_node_ids.append(start_node_id)
dists = [dists]
goal_node_ids = [goal_node_ids]
return start_node_ids, goal_node_ids, dists, target_class
class NavigationEnv(GridWorld, Building):
"""Wrapper around GridWorld which sets up navigation tasks.
"""
def _debug_save_hardness(self, seed):
out_path = os.path.join(self.logdir, '{:s}_{:d}_hardness.png'.format(self.building_name, seed))
batch_size = 4000
rng = np.random.RandomState(0)
start_node_ids, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists = \
rng_next_goal_rejection_sampling(
None, batch_size, self.task.gtG, rng, self.task_params.max_dist,
self.task_params.min_dist, self.task_params.max_dist,
self.task.sampling_distribution, self.task.target_distribution,
self.task.nodes, self.task_params.n_ori, self.task_params.step_size,
self.task.distribution_bins, self.task.rejection_sampling_M)
bins = self.task.distribution_bins
n_bins = self.task.n_bins
with plt.style.context('ggplot'):
fig, axes = utils.subplot(plt, (1,2), (10,10))
ax = axes[0]
_ = ax.hist(hardnesss, bins=bins, weights=np.ones_like(hardnesss)/len(hardnesss))
ax.plot(bins[:-1]+0.5/n_bins, self.task.target_distribution, 'g')
ax.plot(bins[:-1]+0.5/n_bins, self.task.sampling_distribution, 'b')
ax.grid('on')
ax = axes[1]
_ = ax.hist(gt_dists, bins=np.arange(self.task_params.max_dist+1))
ax.grid('on')
ax.set_title('Mean: {:0.2f}, Median: {:0.2f}'.format(np.mean(gt_dists),
np.median(gt_dists)))
with fu.fopen(out_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
def _debug_save_map_nodes(self, seed):
"""Saves traversible space along with nodes generated on the graph. Takes
the seed as input."""
img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.set_axis_off(); ax.axis('equal');
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
ax.imshow(self.traversible, origin='lower');
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
def _debug_semantic_maps(self, seed):
"""Saves traversible space along with nodes generated on the graph. Takes
the seed as input."""
for i, cls in enumerate(self.task_params.semantic_task.class_map_names):
img_path = os.path.join(self.logdir, '{:s}_flip{:d}_{:s}_graph.png'.format(self.building_name, seed, cls))
maps = self.traversible*1.
maps += 0.5*(self.task.class_maps_dilated[:,:,i])
write_traversible = (maps*1.+1.)/3.0
write_traversible = (write_traversible*255.).astype(np.uint8)[:,:,np.newaxis]
write_traversible = write_traversible + np.zeros((1,1,3), dtype=np.uint8)
fu.write_image(img_path, write_traversible[::-1,:,:])
def _preprocess_for_task(self, seed):
"""Sets up the task field for doing navigation on the grid world."""
if self.task is None or self.task.seed != seed:
rng = np.random.RandomState(seed)
origin_loc = get_graph_origin_loc(rng, self.traversible)
self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
n_ori=self.task_params.n_ori)
G = generate_graph(self.valid_fn_vec, self.task_params.step_size,
self.task.n_ori, (0, 0, 0))
gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
self.task.gtG = gtG
self.task.nodes = nodes
self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
self.task.nodes_to_id = nodes_to_id
logging.info('Building %s, #V=%d, #E=%d', self.building_name,
self.task.nodes.shape[0], self.task.gtG.num_edges())
type = self.task_params.type
if type == 'general':
# Do nothing
_ = None
elif type == 'room_to_room_many' or type == 'room_to_room_back':
if type == 'room_to_room_back':
assert(self.task_params.num_goals == 2), 'num_goals must be 2.'
self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
xyt = self.to_actual_xyt_vec(self.task.nodes)
self.task.node_room_ids = _label_nodes_with_room_id(xyt, self.room_dims)
self.task.reset_kwargs = {'node_room_ids': self.task.node_room_ids}
elif type == 'rng_rejection_sampling_many':
n_bins = 20
rejection_sampling_M = self.task_params.rejection_sampling_M
min_dist = self.task_params.min_dist
bins = np.arange(n_bins+1)/(n_bins*1.)
target_d = np.zeros(n_bins); target_d[...] = 1./n_bins;
sampling_d = get_hardness_distribution(
self.task.gtG, self.task_params.max_dist, self.task_params.min_dist,
np.random.RandomState(0), 4000, bins, self.task.nodes,
self.task_params.n_ori, self.task_params.step_size)
self.task.reset_kwargs = {'distribution_bins': bins,
'target_distribution': target_d,
'sampling_distribution': sampling_d,
'rejection_sampling_M': rejection_sampling_M,
'n_bins': n_bins,
'n_ori': self.task_params.n_ori,
'step_size': self.task_params.step_size,
'min_dist': self.task_params.min_dist}
self.task.n_bins = n_bins
self.task.distribution_bins = bins
self.task.target_distribution = target_d
self.task.sampling_distribution = sampling_d
self.task.rejection_sampling_M = rejection_sampling_M
if self.logdir is not None:
self._debug_save_hardness(seed)
elif type[:14] == 'to_nearest_obj':
self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
xyt = self.to_actual_xyt_vec(self.task.nodes)
self.class_maps = _select_classes(self.class_maps,
self.class_map_names,
self.task_params.semantic_task.class_map_names)*1
self.class_map_names = self.task_params.semantic_task.class_map_names
nodes_xyt = self.to_actual_xyt_vec(np.array(self.task.nodes))
tt = utils.Timer(); tt.tic();
if self.task_params.type == 'to_nearest_obj_acc':
self.task.class_maps_dilated, self.task.node_class_label = label_nodes_with_class_geodesic(
nodes_xyt, self.class_maps,
self.task_params.semantic_task.pix_distance+8, self.map.traversible,
ff_cost=1., fo_cost=1., oo_cost=4., connectivity=8.)
dists = []
for i in range(len(self.class_map_names)):
class_nodes_ = np.where(self.task.node_class_label[:,i])[0]
dists.append(get_distance_node_list(gtG, source_nodes=class_nodes_, direction='to'))
self.task.dist_to_class = dists
a_, b_ = np.where(self.task.node_class_label)
self.task.class_nodes = np.concatenate((a_[:,np.newaxis], b_[:,np.newaxis]), axis=1)
if self.logdir is not None:
self._debug_semantic_maps(seed)
self.task.reset_kwargs = {'sampling': self.task_params.semantic_task.sampling,
'class_nodes': self.task.class_nodes,
'dist_to_class': self.task.dist_to_class}
if self.logdir is not None:
self._debug_save_map_nodes(seed)
def reset(self, rngs):
rng = rngs[0]; rng_perturb = rngs[1];
nodes = self.task.nodes
tp = self.task_params
start_node_ids, goal_node_ids, dists, target_class = \
_nav_env_reset_helper(tp.type, rng, self.task.nodes, tp.batch_size,
self.task.gtG, tp.max_dist, tp.num_steps,
tp.num_goals, tp.data_augment,
**(self.task.reset_kwargs))
start_nodes = [tuple(nodes[_,:]) for _ in start_node_ids]
goal_nodes = [[tuple(nodes[_,:]) for _ in __] for __ in goal_node_ids]
data_augment = tp.data_augment
perturbs = _gen_perturbs(rng_perturb, tp.batch_size,
(tp.num_steps+1)*tp.num_goals,
data_augment.lr_flip, data_augment.delta_angle,
data_augment.delta_xy, data_augment.structured)
perturbs = np.array(perturbs) # batch x steps x 4
end_perturbs = perturbs[:,-(tp.num_goals):,:]*1 # fixed perturb for the goal.
perturbs = perturbs[:,:-(tp.num_goals),:]*1
history = -np.ones((tp.batch_size, tp.num_steps*tp.num_goals), dtype=np.int32)
self.episode = utils.Foo(
start_nodes=start_nodes, start_node_ids=start_node_ids,
goal_nodes=goal_nodes, goal_node_ids=goal_node_ids, dist_to_goal=dists,
perturbs=perturbs, goal_perturbs=end_perturbs, history=history,
target_class=target_class, history_frames=[])
return start_node_ids
def take_action(self, current_node_ids, action, step_number):
"""In addition to returning the action, also returns the reward that the
agent receives."""
goal_number = step_number / self.task_params.num_steps
new_node_ids = GridWorld.take_action(self, current_node_ids, action)
rewards = []
for i, n in enumerate(new_node_ids):
reward = 0
if n == self.episode.goal_node_ids[goal_number][i]:
reward = self.task_params.reward_at_goal
reward = reward - self.task_params.reward_time_penalty
rewards.append(reward)
return new_node_ids, rewards
def get_optimal_action(self, current_node_ids, step_number):
"""Returns the optimal action from the current node."""
goal_number = step_number / self.task_params.num_steps
gtG = self.task.gtG
a = np.zeros((len(current_node_ids), self.task_params.num_actions), dtype=np.int32)