forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandard_runner_test.py
95 lines (70 loc) · 2.76 KB
/
standard_runner_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for orbit.standard_runner."""
# pylint: disable=g-bad-import-order
from orbit import standard_runner
import tensorflow as tf
def dataset_fn(input_context=None):
del input_context
def dummy_data(_):
return tf.zeros((1, 1), dtype=tf.float32)
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
class TestRunner(standard_runner.StandardTrainer,
standard_runner.StandardEvaluator):
"""Implements the training and evaluation APIs for tests."""
def __init__(self):
self.strategy = tf.distribute.get_strategy()
self.global_step = tf.Variable(
0,
trainable=False,
dtype=tf.int64,
name='global_step',
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
standard_runner.StandardTrainer.__init__(self, train_dataset=None)
standard_runner.StandardEvaluator.__init__(self, eval_dataset=None)
def train_loop_begin(self):
self.train_dataset = (
self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
)
def train_step(self, iterator):
def _replicated_step(_):
self.global_step.assign_add(1)
self.strategy.run(_replicated_step, args=(next(iterator),))
def train_loop_end(self):
return self.global_step.numpy()
def eval_begin(self):
self.eval_dataset = self.strategy.experimental_distribute_datasets_from_function(
dataset_fn)
def eval_step(self, iterator):
def _replicated_step(_):
self.global_step.assign_add(1)
self.strategy.run(_replicated_step, args=(next(iterator),))
def eval_end(self):
return self.global_step.numpy()
class StandardRunnerTest(tf.test.TestCase):
def test_train(self):
test_runner = TestRunner()
self.assertEqual(
test_runner.train(tf.convert_to_tensor(10, dtype=tf.int32)), 10)
def test_eval(self):
test_runner = TestRunner()
self.assertEqual(
test_runner.evaluate(tf.convert_to_tensor(10, dtype=tf.int32)), 10)
if __name__ == '__main__':
tf.test.main()