|
| 1 | +/** |
| 2 | + * [152] Maximum Product Subarray |
| 3 | + * |
| 4 | + * Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. |
| 5 | + * |
| 6 | + * Example 1: |
| 7 | + * |
| 8 | + * |
| 9 | + * Input: [2,3,-2,4] |
| 10 | + * Output: 6 |
| 11 | + * Explanation: [2,3] has the largest product 6. |
| 12 | + * |
| 13 | + * |
| 14 | + * Example 2: |
| 15 | + * |
| 16 | + * |
| 17 | + * Input: [-2,0,-1] |
| 18 | + * Output: 0 |
| 19 | + * Explanation: The result cannot be 2, because [-2,-1] is not a subarray. |
| 20 | + * |
| 21 | + */ |
| 22 | +pub struct Solution {} |
| 23 | + |
| 24 | +// submission codes start here |
| 25 | + |
| 26 | +/* |
| 27 | + f[i], g[i] means the max positive value and max negative value for the sub-seq end with index i |
| 28 | +
|
| 29 | + then we have: |
| 30 | +
|
| 31 | + f[i], g[i] = if nums[i] == 0 { |
| 32 | + 0, 0 |
| 33 | + } else if nums[i] > 0 { |
| 34 | + f[i-1] * nums[i], g[i-1] * nums[i] |
| 35 | + } else if nums[i] < 0 { |
| 36 | + g[i-1] * nums[i], f[i-1] * nums[i] |
| 37 | + } |
| 38 | + */ |
| 39 | + |
| 40 | +impl Solution { |
| 41 | + pub fn max_product(nums: Vec<i32>) -> i32 { |
| 42 | + let mut max = nums[0]; |
| 43 | + let mut neg_max = 0; |
| 44 | + let mut pos_max = 0; |
| 45 | + for num in nums.into_iter() { |
| 46 | + if num == 0 { |
| 47 | + neg_max = 0; pos_max = 0; |
| 48 | + max = i32::max(max, 0); |
| 49 | + } else if num > 0 { |
| 50 | + pos_max = i32::max(pos_max * num, num); neg_max = neg_max * num; |
| 51 | + } else { |
| 52 | + let pos_pre = pos_max; |
| 53 | + pos_max = neg_max * num; neg_max = i32::min(pos_pre * num, num); |
| 54 | + } |
| 55 | + if pos_max != 0 { |
| 56 | + max = i32::max(max, pos_max); |
| 57 | + } |
| 58 | + } |
| 59 | + max |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +// submission codes end |
| 64 | + |
| 65 | +#[cfg(test)] |
| 66 | +mod tests { |
| 67 | + use super::*; |
| 68 | + |
| 69 | + #[test] |
| 70 | + fn test_152() { |
| 71 | + assert_eq!(Solution::max_product(vec![2,3,-2,4]), 6); |
| 72 | + assert_eq!(Solution::max_product(vec![-2,0,-1]), 0); |
| 73 | + assert_eq!(Solution::max_product(vec![-4,-3,-2]), 12); |
| 74 | + } |
| 75 | +} |
0 commit comments