-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathinference_warmup.py
97 lines (85 loc) · 3.71 KB
/
inference_warmup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Writer for inference warmup requests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import io
import os
import numpy as np
import tensorflow.compat.v1 as tf
def _encode_image(image_array, fmt):
"""encodes an (numpy) image array to string.
Args:
image_array: (numpy) image array
fmt: image format to use
Returns:
encoded image string
"""
from PIL import Image # pylint: disable=g-import-not-at-top
pil_image = Image.fromarray(image_array)
image_io = io.BytesIO()
pil_image.save(image_io, format=fmt)
return image_io.getvalue()
def write_warmup_requests(savedmodel_dir,
model_name,
image_size,
batch_sizes=None,
num_requests=8,
image_format='PNG',
input_signature='input'):
"""Writes warmup requests for inference into a tfrecord file.
Args:
savedmodel_dir: string, the file to the exported model folder.
model_name: string, a model name used inside the model server.
image_size: tuple/list or int, size of image. For list/tuple input, assuming
it contains image height and width.
batch_sizes: list, a list of batch sizes to create different input requests.
num_requests: int, number of requests per batch size.
image_format: string, the format of the image to write (PNG, JPEG)
input_signature: string, input signature defined in exported saved model.
Raises:
ValueError: if batch_sizes is not a valid integer list.
"""
from tensorflow_serving.apis import predict_pb2 # pylint: disable=g-import-not-at-top
from tensorflow_serving.apis import prediction_log_pb2 # pylint: disable=g-import-not-at-top
if not isinstance(batch_sizes, list) or not batch_sizes:
raise ValueError('batch sizes should be a valid non-empty list.')
extra_assets_dir = os.path.join(savedmodel_dir, 'assets.extra')
tf.gfile.MkDir(extra_assets_dir)
if isinstance(image_size, int):
height = image_size
width = image_size
elif isinstance(image_size, tuple) or isinstance(image_size, list):
height = image_size[0]
width = image_size[1]
else:
raise ValueError(
'image_size is not a supported type: %s' % type(image_size))
with tf.python_io.TFRecordWriter(
os.path.join(extra_assets_dir, 'tf_serving_warmup_requests')) as writer:
for batch_size in batch_sizes:
for _ in range(num_requests):
request = predict_pb2.PredictRequest()
image = np.uint8(np.random.rand(height, width, 3) * 255)
request.inputs[input_signature].CopyFrom(
tf.make_tensor_proto(
[_encode_image(image, image_format)] * batch_size,
shape=[batch_size]))
request.model_spec.name = model_name
request.model_spec.signature_name = 'serving_default'
log = prediction_log_pb2.PredictionLog(
predict_log=prediction_log_pb2.PredictLog(request=request))
writer.write(log.SerializeToString())