This repository was archived by the owner on Jul 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathreduction.h
114 lines (90 loc) · 4.74 KB
/
reduction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/*
* Copyright 2020 TensorFlow Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "absl/types/span.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
namespace swift_xla {
enum class ReductionMode {
kNone,
kMean,
kSum,
};
xla::XlaOp BuildBinaryCrossEntropy(xla::XlaOp input, xla::XlaOp target,
const absl::optional<xla::XlaOp>& weight,
ReductionMode reduction);
xla::XlaOp BuildBinaryCrossEntropyBackward(
xla::XlaOp grad_output, xla::XlaOp input, xla::XlaOp target,
const absl::optional<xla::XlaOp>& weight, ReductionMode reduction);
xla::XlaOp BuildL1Loss(xla::XlaOp input, xla::XlaOp target,
ReductionMode reduction);
xla::XlaOp BuildL1LossBackward(xla::XlaOp grad_output, xla::XlaOp input,
xla::XlaOp target, ReductionMode reduction);
xla::XlaOp BuildMseLoss(xla::XlaOp input, xla::XlaOp target,
ReductionMode reduction);
xla::XlaOp BuildMseLossBackward(xla::XlaOp grad_output, xla::XlaOp input,
xla::XlaOp target, ReductionMode reduction);
// Builds a mean by reducing all the dimensions listed in dimensions. If
// keep_reduced_dimensions is true, the reduced dimensions will be retained,
// with value 1.
xla::XlaOp BuildMean(xla::XlaOp input, absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
xla::XlaOp BuildStdDeviation(xla::XlaOp input,
absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions, bool unbiased);
// Builds the sum of all values by reducing all the dimensions listed in
// dimensions. If keep_reduced_dimensions is true, the reduced dimensions will
// be retained, with value 1.
xla::XlaOp BuildSum(xla::XlaOp input, absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
// Builds the max of all values by reducing in the given dimension. If
// keep_reduced_dimensions is true, the reduced dimension will be retained, with
// value 1.
xla::XlaOp BuildMaxInDim(xla::XlaOp input, xla::int64 dim,
bool keep_reduced_dimensions);
// Builds the max of all values by reducing in the given dimensions. If
// keep_reduced_dimensions is true, the reduced dimension will be retained, with
// value 1.
xla::XlaOp BuildMaxInDims(xla::XlaOp input,
absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
// Builds the min of all values by reducing in the given dimension. If
// keep_reduced_dimensions is true, the reduced dimension will be retained, with
// value 1.
xla::XlaOp BuildMinInDim(xla::XlaOp input, xla::int64 dim,
bool keep_reduced_dimensions);
// Compute the indices of the maximum values of a tensor across a dimension.
xla::XlaOp BuildArgMax(xla::XlaOp input, xla::int64 dim, bool keepdim);
// Compute the indices of the minimum values of a tensor across a dimension.
xla::XlaOp BuildArgMin(xla::XlaOp input, xla::int64 dim, bool keepdim);
// Builds the product of all values by reducing all the dimensions listed in
// dimensions. If keep_reduced_dimensions is true, the reduced dimensions will
// be retained, with value 1.
xla::XlaOp BuildProd(xla::XlaOp input, absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
// Compute the cumulative computation specified by "reducer" and "init" in the
// given dimension "dim".
xla::XlaOp BuildCumulativeComputation(xla::XlaOp input, xla::int64 dim,
const xla::XlaComputation& reducer,
xla::XlaOp init, bool exclusive,
bool reverse);
xla::XlaOp BuildAll(xla::XlaOp input, absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
xla::XlaOp BuildAny(xla::XlaOp input, absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
xla::XlaOp BuildLogsumexp(xla::XlaOp input,
absl::Span<const xla::int64> dimensions,
bool keep_reduced_dimensions);
} // namespace swift_xla