This repository was archived by the owner on Jul 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathFreezableTests.swift
63 lines (53 loc) · 2.02 KB
/
FreezableTests.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import XCTest
@testable import TensorFlow
final class FreezableTests: XCTestCase {
func testFreezableParameters() {
// A dense layer with freezable properties.
struct FreezableDense: Layer {
@_Freezable var weight: Tensor<Float>
@_Freezable var bias: Tensor<Float>
init(weight: Tensor<Float>, bias: Tensor<Float>) {
// Require scalar weight and bias for simplicity.
precondition(weight.isScalar)
precondition(bias.isScalar)
self.weight = weight
self.bias = bias
}
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return input * weight + bias
}
}
var dense = FreezableDense(weight: Tensor(2), bias: Tensor(3))
let grad = FreezableDense.TangentVector(weight: Tensor(4), bias: Tensor(1))
dense.move(along: grad)
XCTAssertEqual(Tensor(6), dense.weight)
XCTAssertEqual(Tensor(4), dense.bias)
// Freeze `dense.weight`: its value cannot be updated.
dense.$weight.freeze()
dense.move(along: grad)
XCTAssertEqual(Tensor(6), dense.weight)
XCTAssertEqual(Tensor(5), dense.bias)
// Unfreeze `dense.weight`: its value can be updated again.
dense.$weight.unfreeze()
dense.move(along: grad)
XCTAssertEqual(Tensor(10), dense.weight)
XCTAssertEqual(Tensor(6), dense.bias)
}
static var allTests = [
("testFreezableParameters", testFreezableParameters)
]
}