This repository was archived by the owner on Jul 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathSequentialTests.swift
70 lines (66 loc) · 2.84 KB
/
SequentialTests.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import XCTest
@testable import TensorFlow
final class SequentialTests: XCTestCase {
func testSequential() {
struct Model: Layer {
var dense1 = Dense<Float>(
inputSize: 2,
outputSize: 4,
activation: relu,
weightInitializer: glorotUniform(seed: (0xfffffff, 0xfeeff)))
var dense2 = Dense<Float>(
inputSize: 4,
outputSize: 1,
activation: relu,
weightInitializer: glorotUniform(seed: (0xeffeffe, 0xfffe)))
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: dense1, dense2)
}
}
var model = Model()
let sgd = SGD(for: model, learningRate: 0.02)
let rmsprop = RMSProp(for: model, learningRate: 0.02)
let adam = Adam(for: model, learningRate: 0.02)
let adamax = AdaMax(for: model, learningRate: 0.02)
let amsgrad = AMSGrad(for: model, learningRate: 0.02)
let adagrad = AdaGrad(for: model, learningRate: 0.02)
let adadelta = AdaDelta(for: model, learningRate: 0.02)
let x: Tensor<Float> = [[0, 0], [0, 1], [1, 0], [1, 1]]
let y: Tensor<Float> = [0, 1, 1, 0]
Context.local.learningPhase = .training
withTensorLeakChecking {
for _ in 0..<1000 {
let 𝛁model = model.gradient { model -> Tensor<Float> in
let ŷ = model(x)
return meanSquaredError(predicted: ŷ, expected: y)
}
sgd.update(&model, along: 𝛁model)
rmsprop.update(&model, along: 𝛁model)
adam.update(&model, along: 𝛁model)
adamax.update(&model, along: 𝛁model)
amsgrad.update(&model, along: 𝛁model)
adagrad.update(&model, along: 𝛁model)
adadelta.update(&model, along: 𝛁model)
}
}
XCTAssertEqual(model.inferring(from: [[0, 0], [0, 1], [1, 0], [1, 1]]),
[[0.52508783], [0.52508783], [0.52508783], [0.52508783]])
}
static var allTests = [
("testSequential", testSequential)
]
}