-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathcifarnet_preprocessing.py
148 lines (124 loc) · 5.21 KB
/
cifarnet_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides utilities to preprocess images in CIFAR-10.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
_PADDING = 4
def preprocess_for_train(image,
output_height,
output_width,
padding=_PADDING,
add_image_summaries=True,
use_grayscale=False):
"""Preprocesses the given image for training.
Note that the actual resizing scale is sampled from
[`resize_size_min`, `resize_size_max`].
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
padding: The amound of padding before and after each dimension of the image.
add_image_summaries: Enable image summaries.
use_grayscale: Whether to convert the image from RGB to grayscale.
Returns:
A preprocessed image.
"""
if add_image_summaries:
tf.summary.image('image', tf.expand_dims(image, 0))
# Transform the image to floats.
image = tf.to_float(image)
if use_grayscale:
image = tf.image.rgb_to_grayscale(image)
if padding > 0:
image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
# Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(image,
[output_height, output_width, 3])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
if add_image_summaries:
tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
# Because these operations are not commutative, consider randomizing
# the order their operation.
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,
lower=0.2, upper=1.8)
# Subtract off the mean and divide by the variance of the pixels.
return tf.image.per_image_standardization(distorted_image)
def preprocess_for_eval(image,
output_height,
output_width,
add_image_summaries=True,
use_grayscale=False):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
add_image_summaries: Enable image summaries.
use_grayscale: Whether to convert the image from RGB to grayscale.
Returns:
A preprocessed image.
"""
if add_image_summaries:
tf.summary.image('image', tf.expand_dims(image, 0))
# Transform the image to floats.
image = tf.to_float(image)
if use_grayscale:
image = tf.image.rgb_to_grayscale(image)
# Resize and crop if needed.
resized_image = tf.image.resize_image_with_crop_or_pad(image,
output_width,
output_height)
if add_image_summaries:
tf.summary.image('resized_image', tf.expand_dims(resized_image, 0))
# Subtract off the mean and divide by the variance of the pixels.
return tf.image.per_image_standardization(resized_image)
def preprocess_image(image,
output_height,
output_width,
is_training=False,
add_image_summaries=True,
use_grayscale=False):
"""Preprocesses the given image.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
is_training: `True` if we're preprocessing the image for training and
`False` otherwise.
add_image_summaries: Enable image summaries.
use_grayscale: Whether to convert the image from RGB to grayscale.
Returns:
A preprocessed image.
"""
if is_training:
return preprocess_for_train(
image,
output_height,
output_width,
add_image_summaries=add_image_summaries,
use_grayscale=use_grayscale)
else:
return preprocess_for_eval(
image,
output_height,
output_width,
add_image_summaries=add_image_summaries,
use_grayscale=use_grayscale)