-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathdownload_and_convert_mnist.py
221 lines (176 loc) · 7.23 KB
/
download_and_convert_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Downloads and converts MNIST data to TFRecords of TF-Example protos.
This module downloads the MNIST data, uncompresses it, reads the files
that make up the MNIST data and creates two TFRecord datasets: one for train
and one for test. Each TFRecord dataset is comprised of a set of TF-Example
protocol buffers, each of which contain a single image and label.
The script should take about a minute to run.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import sys
import numpy as np
from six.moves import urllib
import tensorflow.compat.v1 as tf
from datasets import dataset_utils
# The URLs where the MNIST data can be downloaded.
_DATA_URL = 'http://yann.lecun.com/exdb/mnist/'
_TRAIN_DATA_FILENAME = 'train-images-idx3-ubyte.gz'
_TRAIN_LABELS_FILENAME = 'train-labels-idx1-ubyte.gz'
_TEST_DATA_FILENAME = 't10k-images-idx3-ubyte.gz'
_TEST_LABELS_FILENAME = 't10k-labels-idx1-ubyte.gz'
_IMAGE_SIZE = 28
_NUM_CHANNELS = 1
# The names of the classes.
_CLASS_NAMES = [
'zero',
'one',
'two',
'three',
'four',
'five',
'size',
'seven',
'eight',
'nine',
]
def _extract_images(filename, num_images):
"""Extract the images into a numpy array.
Args:
filename: The path to an MNIST images file.
num_images: The number of images in the file.
Returns:
A numpy array of shape [number_of_images, height, width, channels].
"""
print('Extracting images from: ', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(
_IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
return data
def _extract_labels(filename, num_labels):
"""Extract the labels into a vector of int64 label IDs.
Args:
filename: The path to an MNIST labels file.
num_labels: The number of labels in the file.
Returns:
A numpy array of shape [number_of_labels]
"""
print('Extracting labels from: ', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_labels)
labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
return labels
def _add_to_tfrecord(data_filename, labels_filename, num_images,
tfrecord_writer):
"""Loads data from the binary MNIST files and writes files to a TFRecord.
Args:
data_filename: The filename of the MNIST images.
labels_filename: The filename of the MNIST labels.
num_images: The number of images in the dataset.
tfrecord_writer: The TFRecord writer to use for writing.
"""
images = _extract_images(data_filename, num_images)
labels = _extract_labels(labels_filename, num_images)
shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
with tf.Graph().as_default():
image = tf.placeholder(dtype=tf.uint8, shape=shape)
encoded_png = tf.image.encode_png(image)
with tf.Session('') as sess:
for j in range(num_images):
sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images))
sys.stdout.flush()
png_string = sess.run(encoded_png, feed_dict={image: images[j]})
example = dataset_utils.image_to_tfexample(
png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j])
tfrecord_writer.write(example.SerializeToString())
def _get_output_filename(dataset_dir, split_name):
"""Creates the output filename.
Args:
dataset_dir: The directory where the temporary files are stored.
split_name: The name of the train/test split.
Returns:
An absolute file path.
"""
return '%s/mnist_%s.tfrecord' % (dataset_dir, split_name)
def _download_dataset(dataset_dir):
"""Downloads MNIST locally.
Args:
dataset_dir: The directory where the temporary files are stored.
"""
for filename in [_TRAIN_DATA_FILENAME,
_TRAIN_LABELS_FILENAME,
_TEST_DATA_FILENAME,
_TEST_LABELS_FILENAME]:
filepath = os.path.join(dataset_dir, filename)
if not os.path.exists(filepath):
print('Downloading file %s...' % filename)
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %.1f%%' % (
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(_DATA_URL + filename,
filepath,
_progress)
print()
with tf.gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
def _clean_up_temporary_files(dataset_dir):
"""Removes temporary files used to create the dataset.
Args:
dataset_dir: The directory where the temporary files are stored.
"""
for filename in [_TRAIN_DATA_FILENAME,
_TRAIN_LABELS_FILENAME,
_TEST_DATA_FILENAME,
_TEST_LABELS_FILENAME]:
filepath = os.path.join(dataset_dir, filename)
tf.gfile.Remove(filepath)
def run(dataset_dir):
"""Runs the download and conversion operation.
Args:
dataset_dir: The dataset directory where the dataset is stored.
"""
if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir)
training_filename = _get_output_filename(dataset_dir, 'train')
testing_filename = _get_output_filename(dataset_dir, 'test')
if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename):
print('Dataset files already exist. Exiting without re-creating them.')
return
_download_dataset(dataset_dir)
# First, process the training data:
with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
data_filename = os.path.join(dataset_dir, _TRAIN_DATA_FILENAME)
labels_filename = os.path.join(dataset_dir, _TRAIN_LABELS_FILENAME)
_add_to_tfrecord(data_filename, labels_filename, 60000, tfrecord_writer)
# Next, process the testing data:
with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
data_filename = os.path.join(dataset_dir, _TEST_DATA_FILENAME)
labels_filename = os.path.join(dataset_dir, _TEST_LABELS_FILENAME)
_add_to_tfrecord(data_filename, labels_filename, 10000, tfrecord_writer)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the MNIST dataset!')