-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathdownload_and_convert_ade20k.sh
80 lines (70 loc) · 2.36 KB
/
download_and_convert_ade20k.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/bin/bash
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Script to download and preprocess the ADE20K dataset.
#
# Usage:
# bash ./download_and_convert_ade20k.sh
#
# The folder structure is assumed to be:
# + datasets
# - build_data.py
# - build_ade20k_data.py
# - download_and_convert_ade20k.sh
# + ADE20K
# + tfrecord
# + ADEChallengeData2016
# + annotations
# + training
# + validation
# + images
# + training
# + validation
# Exit immediately if a command exits with a non-zero status.
set -e
CURRENT_DIR=$(pwd)
WORK_DIR="./ADE20K"
mkdir -p "${WORK_DIR}"
cd "${WORK_DIR}"
# Helper function to download and unpack ADE20K dataset.
download_and_uncompress() {
local BASE_URL=${1}
local FILENAME=${2}
if [ ! -f "${FILENAME}" ]; then
echo "Downloading ${FILENAME} to ${WORK_DIR}"
wget -nd -c "${BASE_URL}/${FILENAME}"
fi
echo "Uncompressing ${FILENAME}"
unzip "${FILENAME}"
}
# Download the images.
BASE_URL="http://data.csail.mit.edu/places/ADEchallenge"
FILENAME="ADEChallengeData2016.zip"
download_and_uncompress "${BASE_URL}" "${FILENAME}"
cd "${CURRENT_DIR}"
# Root path for ADE20K dataset.
ADE20K_ROOT="${WORK_DIR}/ADEChallengeData2016"
# Build TFRecords of the dataset.
# First, create output directory for storing TFRecords.
OUTPUT_DIR="${WORK_DIR}/tfrecord"
mkdir -p "${OUTPUT_DIR}"
echo "Converting ADE20K dataset..."
python ./build_ade20k_data.py \
--train_image_folder="${ADE20K_ROOT}/images/training/" \
--train_image_label_folder="${ADE20K_ROOT}/annotations/training/" \
--val_image_folder="${ADE20K_ROOT}/images/validation/" \
--val_image_label_folder="${ADE20K_ROOT}/annotations/validation/" \
--output_dir="${OUTPUT_DIR}"