-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathbuild_ade20k_data.py
123 lines (103 loc) · 4.31 KB
/
build_ade20k_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts ADE20K data to TFRecord file format with Example protos."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import build_data
from six.moves import range
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'train_image_folder',
'./ADE20K/ADEChallengeData2016/images/training',
'Folder containing trainng images')
tf.app.flags.DEFINE_string(
'train_image_label_folder',
'./ADE20K/ADEChallengeData2016/annotations/training',
'Folder containing annotations for trainng images')
tf.app.flags.DEFINE_string(
'val_image_folder',
'./ADE20K/ADEChallengeData2016/images/validation',
'Folder containing validation images')
tf.app.flags.DEFINE_string(
'val_image_label_folder',
'./ADE20K/ADEChallengeData2016/annotations/validation',
'Folder containing annotations for validation')
tf.app.flags.DEFINE_string(
'output_dir', './ADE20K/tfrecord',
'Path to save converted tfrecord of Tensorflow example')
_NUM_SHARDS = 4
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir):
"""Converts the ADE20k dataset into into tfrecord format.
Args:
dataset_split: Dataset split (e.g., train, val).
dataset_dir: Dir in which the dataset locates.
dataset_label_dir: Dir in which the annotations locates.
Raises:
RuntimeError: If loaded image and label have different shape.
"""
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg'))
random.shuffle(img_names)
seg_names = []
for f in img_names:
# get the filename without the extension
basename = os.path.basename(f).split('.')[0]
# cover its corresponding *_seg.png
seg = os.path.join(dataset_label_dir, basename+'.png')
seg_names.append(seg)
num_images = len(img_names)
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, num_images, shard_id))
sys.stdout.flush()
# Read the image.
image_filename = img_names[i]
image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = seg_names[i]
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, img_names[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def main(unused_argv):
tf.gfile.MakeDirs(FLAGS.output_dir)
_convert_dataset(
'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder)
_convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder)
if __name__ == '__main__':
tf.app.run()