This repository was archived by the owner on Jan 21, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 256
/
Copy pathunet.py
704 lines (589 loc) · 27.3 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
# coding=utf-8
# Copyright 2023 The Mesh TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MeshTensorflow network of Unet with spatial partition.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import mesh_tensorflow as mtf
import numpy as np
from six.moves import range
import tensorflow.compat.v1 as tf # tf
# pylint: disable=g-direct-tensorflow-import,g-direct-third-party-import
from mesh_tensorflow.experimental import data_aug_lib
from tensorflow.python.platform import flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('sampled_2d_slices', False,
'Whether to build model on 2D CT slices instead of 3D.')
flags.DEFINE_integer('ct_resolution', 128,
'Resolution of CT images along depth, height and '
'width dimensions.')
flags.DEFINE_integer('n_dataset_read_interleave', 16,
'The number of interleave processes.')
flags.DEFINE_integer('n_dataset_processes', 16,
'The number of data augmentation processes.')
flags.DEFINE_integer('batch_size_train', 32, 'Training batch size.')
flags.DEFINE_integer('batch_size_eval', 32, 'Evaluation batch size.')
flags.DEFINE_integer('image_nx_block', 8, 'The number of x blocks.')
flags.DEFINE_integer('image_ny_block', 8, 'The number of y blocks.')
flags.DEFINE_integer('image_c', 1,
'The number of input image channels. '
'If sampled_2d_slices is False, image_c should be 1.')
flags.DEFINE_integer('label_c', 3, 'The number of output classes.')
flags.DEFINE_integer('pred_downsample', 2,
'Down-sampling the results by the factor of '
'`pred_downsample`, before outputing the results.')
flags.DEFINE_boolean('output_ground_truth', True,
'Whether to return the ground truth tensor in Unet, '
'in addition to returning the prediction tensor.')
flags.DEFINE_integer('n_base_filters', 32, 'The number of filters.')
flags.DEFINE_integer('network_depth', 4, 'The number of pooling layers.')
flags.DEFINE_integer('n_conv_per_block', 2,
'The number of conv layers between poolings.')
flags.DEFINE_boolean('with_batch_norm', True, 'Whether to use batch norm.')
flags.DEFINE_float('dropout_keep_p', 0.5, 'Probability to keep activations.')
flags.DEFINE_float('xen_liver_weight', 8,
'The weight of liver region pixels, '
'when computing the cross-entropy loss')
flags.DEFINE_float('xen_lesion_weight', 16,
'The weight of lesion region pixels, '
'when computing the cross-entropy loss')
flags.DEFINE_float('dice_loss_weight', 0.2,
'The weight of dice loss, ranges from 0 to 1')
flags.DEFINE_float('dice_epsilon', 0.1,
'A small value that prevents 0 dividing.')
flags.DEFINE_float('image_translate_ratio', 0.0,
'How much you want to translate the image and label, '
'for data augmentation.')
flags.DEFINE_float('image_transform_ratio', 0.0,
'How much you want to sheer the image and label, '
'for data augmentation.')
flags.DEFINE_float('image_noise_probability', 0.0,
'Probability of adding noise during data augmentation.')
flags.DEFINE_float('image_noise_ratio', 0.0,
'How much random noise you want to add to CT images.')
flags.DEFINE_float('image_corrupt_ratio_mean', 0.0,
'How much non-liver area you want to block-out in average.')
flags.DEFINE_float('image_corrupt_ratio_stddev', 0.0,
'Std-dev of how much non-liver area you want to block-out.')
flags.DEFINE_float('per_class_intensity_scale', 0.0,
'How much to scale intensities of lesion/non-lesion areas.')
flags.DEFINE_float('per_class_intensity_shift', 0.0,
'How much to shift intensities of lesion/non-lesion areas.')
flags.DEFINE_string('mtf_dtype', 'bfloat16', 'dtype for MeshTensorflow.')
flags.DEFINE_string('layout',
'batch:cores, image_nx_block:rows, image_ny_block:columns',
'layout rules')
flags.DEFINE_string('train_file_pattern', '',
'Path to CT scan training data.')
flags.DEFINE_string('eval_file_pattern', '',
'Path to CT scan evalutation data.')
def get_layout():
return mtf.convert_to_layout_rules(FLAGS.layout)
def get_dataset_creator(dataset_str):
"""Returns a function that creates an unbatched dataset."""
if dataset_str == 'train':
data_file_pattern = FLAGS.train_file_pattern.format(FLAGS.ct_resolution)
shuffle = True
interleave = True
else:
assert dataset_str == 'eval'
data_file_pattern = FLAGS.eval_file_pattern.format(FLAGS.ct_resolution)
shuffle = False
interleave = False
def _dataset_creator():
"""Returns an unbatch dataset."""
def _get_stacked_2d_slices(image_3d, label_3d):
"""Return 2d slices of the 3d scan."""
image_stack = []
label_stack = []
for begin_idx in range(0, FLAGS.ct_resolution - FLAGS.image_c + 1):
slice_begin = [0, 0, begin_idx]
slice_size = [FLAGS.ct_resolution, FLAGS.ct_resolution, FLAGS.image_c]
image = tf.slice(image_3d, slice_begin, slice_size)
slice_begin = [0, 0, begin_idx + FLAGS.image_c // 2]
slice_size = [FLAGS.ct_resolution, FLAGS.ct_resolution, 1]
label = tf.slice(label_3d, slice_begin, slice_size)
spatial_dims_w_blocks = [FLAGS.image_nx_block,
FLAGS.ct_resolution // FLAGS.image_nx_block,
FLAGS.image_ny_block,
FLAGS.ct_resolution // FLAGS.image_ny_block]
image = tf.reshape(image, spatial_dims_w_blocks + [FLAGS.image_c])
label = tf.reshape(label, spatial_dims_w_blocks)
label = tf.cast(label, tf.int32)
label = tf.one_hot(label, FLAGS.label_c)
data_dtype = tf.as_dtype(FLAGS.mtf_dtype)
image = tf.cast(image, data_dtype)
label = tf.cast(label, data_dtype)
image_stack.append(image)
label_stack.append(label)
return tf.stack(image_stack), tf.stack(label_stack)
def _parser_fn(serialized_example):
"""Parses a single tf.Example into image and label tensors."""
features = {}
features['image/ct_image'] = tf.FixedLenFeature([], tf.string)
features['image/label'] = tf.FixedLenFeature([], tf.string)
parsed = tf.parse_single_example(serialized_example, features=features)
spatial_dims = [FLAGS.ct_resolution] * 3
if FLAGS.sampled_2d_slices:
noise_shape = [FLAGS.ct_resolution] * 2 + [FLAGS.image_c]
else:
noise_shape = [FLAGS.ct_resolution] * 3
image = tf.decode_raw(parsed['image/ct_image'], tf.float32)
label = tf.decode_raw(parsed['image/label'], tf.float32)
if dataset_str != 'train':
# Preprocess intensity, clip to 0 ~ 1.
# The training set is already preprocessed.
image = tf.clip_by_value(image / 1024.0 + 0.5, 0, 1)
image = tf.reshape(image, spatial_dims)
label = tf.reshape(label, spatial_dims)
if dataset_str == 'eval' and FLAGS.sampled_2d_slices:
return _get_stacked_2d_slices(image, label)
if FLAGS.sampled_2d_slices:
# Take random slices of images and label
begin_idx = tf.random_uniform(
shape=[], minval=0,
maxval=FLAGS.ct_resolution - FLAGS.image_c + 1, dtype=tf.int32)
slice_begin = [0, 0, begin_idx]
slice_size = [FLAGS.ct_resolution, FLAGS.ct_resolution, FLAGS.image_c]
image = tf.slice(image, slice_begin, slice_size)
label = tf.slice(label, slice_begin, slice_size)
if dataset_str == 'train':
for flip_axis in [0, 1, 2]:
image, label = data_aug_lib.maybe_flip(image, label, flip_axis)
image, label = data_aug_lib.maybe_rot180(image, label, static_axis=2)
image = data_aug_lib.intensity_shift(
image, label,
FLAGS.per_class_intensity_scale, FLAGS.per_class_intensity_shift)
image = data_aug_lib.image_corruption(
image, label, FLAGS.ct_resolution,
FLAGS.image_corrupt_ratio_mean, FLAGS.image_corrupt_ratio_stddev)
image = data_aug_lib.maybe_add_noise(
image, noise_shape, 1, 4,
FLAGS.image_noise_probability, FLAGS.image_noise_ratio)
image, label = data_aug_lib.projective_transform(
image, label, FLAGS.ct_resolution,
FLAGS.image_translate_ratio, FLAGS.image_transform_ratio,
FLAGS.sampled_2d_slices)
if FLAGS.sampled_2d_slices:
# Only get the center slice of label.
label = tf.slice(label, [0, 0, FLAGS.image_c // 2],
[FLAGS.ct_resolution, FLAGS.ct_resolution, 1])
spatial_dims_w_blocks = [FLAGS.image_nx_block,
FLAGS.ct_resolution // FLAGS.image_nx_block,
FLAGS.image_ny_block,
FLAGS.ct_resolution // FLAGS.image_ny_block]
if not FLAGS.sampled_2d_slices:
spatial_dims_w_blocks += [FLAGS.ct_resolution]
image = tf.reshape(image, spatial_dims_w_blocks + [FLAGS.image_c])
label = tf.reshape(label, spatial_dims_w_blocks)
label = tf.cast(label, tf.int32)
label = tf.one_hot(label, FLAGS.label_c)
data_dtype = tf.as_dtype(FLAGS.mtf_dtype)
image = tf.cast(image, data_dtype)
label = tf.cast(label, data_dtype)
return image, label
dataset_fn = functools.partial(tf.data.TFRecordDataset,
compression_type='GZIP')
dataset = tf.data.Dataset.list_files(data_file_pattern,
shuffle=shuffle).repeat()
if interleave:
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
lambda file_name: dataset_fn(file_name).prefetch(1),
cycle_length=FLAGS.n_dataset_read_interleave,
sloppy=True))
else:
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
lambda file_name: dataset_fn(file_name).prefetch(1),
cycle_length=1,
sloppy=False))
if shuffle:
dataset = dataset.shuffle(FLAGS.n_dataset_processes).map(
_parser_fn, num_parallel_calls=FLAGS.n_dataset_processes)
else:
dataset = dataset.map(_parser_fn)
if dataset_str == 'eval' and FLAGS.sampled_2d_slices:
# When evaluating on slices, unbatch slices that belong to one CT scan.
dataset = dataset.unbatch()
return dataset
return _dataset_creator
def get_input_mtf_shapes(dataset_str):
"""Returns a list of mtf.Shapes of input tensors."""
if dataset_str == 'train':
batch_dim = mtf.Dimension('batch', FLAGS.batch_size_train)
else:
assert dataset_str == 'eval'
batch_dim = mtf.Dimension('batch', FLAGS.batch_size_eval)
image_nx_dim = mtf.Dimension('image_nx_block', FLAGS.image_nx_block)
image_ny_dim = mtf.Dimension('image_ny_block', FLAGS.image_ny_block)
image_sx_dim = mtf.Dimension('image_sx_block',
FLAGS.ct_resolution // FLAGS.image_nx_block)
image_sy_dim = mtf.Dimension('image_sy_block',
FLAGS.ct_resolution // FLAGS.image_ny_block)
batch_spatial_dims = [batch_dim,
image_nx_dim, image_sx_dim,
image_ny_dim, image_sy_dim]
if not FLAGS.sampled_2d_slices:
image_sz_dim = mtf.Dimension('image_sz_block', FLAGS.ct_resolution)
batch_spatial_dims += [image_sz_dim]
image_c_dim = mtf.Dimension('image_c', FLAGS.image_c)
mtf_image_shape = mtf.Shape(batch_spatial_dims + [image_c_dim])
label_c_dim = mtf.Dimension('label_c', FLAGS.label_c)
mtf_label_shape = mtf.Shape(batch_spatial_dims + [label_c_dim])
return [mtf_image_shape, mtf_label_shape]
class PostProcessor(object):
"""Merge and save evaluation results."""
def __init__(self):
self._area_int = []
self._area_sum = []
self._instance_i = 0
def record(self, results, pred_output_dir):
"""Do whatever to the results returned by unet_with_spatial_partition."""
if FLAGS.output_ground_truth:
pred_liver, pred_lesion, label, area_int, area_sum, _, global_step = (
results)
else:
pred_liver, pred_lesion, area_int, area_sum, _, global_step = results
if not tf.gfile.IsDirectory(pred_output_dir):
tf.gfile.MakeDirs(pred_output_dir)
if FLAGS.sampled_2d_slices:
with tf.gfile.Open(os.path.join(
pred_output_dir, 'pred_liver_{}_{}.npy'.format(
global_step, self._instance_i)), 'wb') as f:
np.save(f, pred_liver)
with tf.gfile.Open(os.path.join(
pred_output_dir, 'pred_lesion_{}_{}.npy'.format(
global_step, self._instance_i)), 'wb') as f:
np.save(f, pred_lesion)
if FLAGS.output_ground_truth:
with tf.gfile.Open(os.path.join(
pred_output_dir, 'label_{}_{}.npy'.format(
global_step, self._instance_i)), 'wb') as f:
np.save(f, label)
self._instance_i += 1
else:
pred_liver = self._reshape_to_cubes(pred_liver)
for ins_i, pred_liver_instance in enumerate(pred_liver):
with tf.gfile.Open(os.path.join(
pred_output_dir, 'pred_liver_{}_{}.npy'.format(
global_step, self._instance_i + ins_i)), 'wb') as f:
np.save(f, pred_liver_instance)
pred_lesion = self._reshape_to_cubes(pred_lesion)
for ins_i, pred_lesion_instance in enumerate(pred_lesion):
with tf.gfile.Open(os.path.join(
pred_output_dir, 'pred_lesion_{}_{}.npy'.format(
global_step, self._instance_i + ins_i)), 'wb') as f:
np.save(f, pred_lesion_instance)
if FLAGS.output_ground_truth:
label = self._reshape_to_cubes(label)
for ins_i, label_instance in enumerate(label):
with tf.gfile.Open(os.path.join(
pred_output_dir, 'label_{}_{}.npy'.format(
global_step, self._instance_i + ins_i)), 'wb') as f:
np.save(f, label_instance)
self._instance_i += len(pred_liver)
self._area_int.append(area_int)
self._area_sum.append(area_sum)
def finish(self):
"""Merge the results and compute final dice scores."""
area_int = np.concatenate(self._area_int)
area_sum = np.concatenate(self._area_sum)
if FLAGS.sampled_2d_slices:
# Merge the results on 2d slices.
assert area_int.size % (FLAGS.ct_resolution - FLAGS.image_c + 1) == 0, (
'Wrong number of results: {}'.format(area_int.shape))
area_int = area_int.reshape([-1, FLAGS.ct_resolution - FLAGS.image_c + 1])
area_int = area_int.sum(axis=1)
area_sum = area_sum.reshape([-1, FLAGS.ct_resolution - FLAGS.image_c + 1])
area_sum = area_sum.sum(axis=1)
dice_per_case = (2 * area_int / (area_sum + 0.001)).mean()
dice_global = 2 * area_int.sum() / (area_sum.sum() + 0.001)
# pylint: disable=logging-format-interpolation
tf.logging.info('dice_per_case: {}, dice_global: {}'.format(
dice_per_case, dice_global))
# pylint: enable=logging-format-interpolation
def _reshape_to_cubes(self, data):
reso = FLAGS.ct_resolution // FLAGS.pred_downsample
data = np.transpose(data, (0, 1, 3, 2, 4, 5))
data = np.reshape(data, (data.shape[0], reso, reso, reso))
return data
def conv_with_spatial_partition(
x, sampled_2d_slices, image_nx_dim, image_ny_dim, n_filters,
keep_p, with_batch_norm, is_training, odim_name, variable_dtype, name):
"""Conv with spatial partition, batch_noram and activation."""
if sampled_2d_slices:
x = mtf.layers.conv2d_with_blocks(
x, mtf.Dimension(odim_name, n_filters),
filter_size=(3, 3), strides=(1, 1), padding='SAME',
h_blocks_dim=image_nx_dim, w_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name=name,
)
else:
x = mtf.layers.conv3d_with_blocks(
x, mtf.Dimension(odim_name, n_filters),
filter_size=(3, 3, 3), strides=(1, 1, 1), padding='SAME',
d_blocks_dim=image_nx_dim, h_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name=name,
)
if with_batch_norm:
x, bn_update_ops = mtf.layers.batch_norm(
x, is_training, momentum=0.90, epsilon=0.000001,
dims_idx_start=0, dims_idx_end=-1, name=name)
else:
bn_update_ops = []
x = mtf.leaky_relu(x, 0.1)
x = mtf.dropout(x, is_training, keep_p)
return x, bn_update_ops
def deconv_with_spatial_partition(
x, sampled_2d_slices, image_nx_dim, image_ny_dim, n_filters, keep_p,
is_training,
odim_name, variable_dtype, name):
"""Deconvolution with spatial partition."""
if sampled_2d_slices:
x = mtf.layers.conv2d_transpose_with_blocks(
x, mtf.Dimension(odim_name, n_filters),
filter_size=(2, 2), strides=(2, 2), padding='SAME',
h_blocks_dim=image_nx_dim, w_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name=name,
)
else:
x = mtf.layers.conv3d_transpose_with_blocks(
x, mtf.Dimension(odim_name, n_filters),
filter_size=(2, 2, 2), strides=(2, 2, 2), padding='SAME',
d_blocks_dim=image_nx_dim, h_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name=name,
)
x = mtf.dropout(x, is_training, keep_p)
return x
def unet_with_spatial_partition(mesh, mesh_impl, dataset_str, images, labels):
"""Builds the UNet model graph, train op and eval metrics.
Args:
mesh: a MeshTensorflow.mesh object.
mesh_impl: a mesh implementation, such as SimdMeshImpl and
PlacementMeshImpl.
dataset_str: a string of either train or eval. This is used for batch_norm.
images: a laid out Tensor with shape [batch, x, y, num_channels]
or [batch, x, y, z, num_channels].
labels: a laid out Tensor with shape [batch, x, y, num_classes]
or [batch, x, y, z, num_classes].
Returns:
Prediction and loss.
"""
is_training = (dataset_str == 'train')
if dataset_str == 'train':
batch_dim = mtf.Dimension('batch', FLAGS.batch_size_train)
else:
assert dataset_str == 'eval'
batch_dim = mtf.Dimension('batch', FLAGS.batch_size_eval)
image_nx_dim = mtf.Dimension('image_nx_block', FLAGS.image_nx_block)
image_ny_dim = mtf.Dimension('image_ny_block', FLAGS.image_ny_block)
image_sx_dim = mtf.Dimension('image_sx_block',
FLAGS.ct_resolution // FLAGS.image_nx_block)
image_sy_dim = mtf.Dimension('image_sy_block',
FLAGS.ct_resolution // FLAGS.image_ny_block)
image_sz_dim = mtf.Dimension('image_sz_block', FLAGS.ct_resolution)
image_c_dim = mtf.Dimension('image_c', FLAGS.image_c)
label_c_dim = mtf.Dimension('label_c', FLAGS.label_c)
mtf_images_shape, mtf_labels_shape = get_input_mtf_shapes(dataset_str)
mtf_dtype = tf.as_dtype(FLAGS.mtf_dtype)
variable_dtype = mtf.VariableDType(mtf_dtype, mtf_dtype, mtf_dtype)
# Import input features.
x = mtf.import_laid_out_tensor(
mesh,
mesh_impl.LaidOutTensor(images),
mtf_images_shape)
x = mtf.cast(x, mtf_dtype)
# Import ground truth labels.
t = mtf.import_laid_out_tensor(
mesh,
mesh_impl.LaidOutTensor(labels),
mtf_labels_shape)
t = mtf.cast(t, mtf_dtype)
# Transpose the blocks.
if FLAGS.sampled_2d_slices:
x = mtf.transpose(x, [batch_dim,
image_nx_dim, image_ny_dim,
image_sx_dim, image_sy_dim,
image_c_dim])
t = mtf.transpose(t, [batch_dim,
image_nx_dim, image_ny_dim,
image_sx_dim, image_sy_dim,
label_c_dim])
else:
x = mtf.transpose(x, [batch_dim,
image_nx_dim, image_ny_dim,
image_sx_dim, image_sy_dim,
image_sz_dim, image_c_dim])
t = mtf.transpose(t, [batch_dim,
image_nx_dim, image_ny_dim,
image_sx_dim, image_sy_dim,
image_sz_dim, label_c_dim])
# Network.
levels = []
all_bn_update_ops = []
# add levels with convolution or down-sampling
for depth in range(FLAGS.network_depth):
for n_conv in range(FLAGS.n_conv_per_block):
if depth == 0 and n_conv == 0:
# no dropout in 1st layer.
dropout_keep_p = 1.0
else:
dropout_keep_p = FLAGS.dropout_keep_p
x, bn_update_ops = conv_with_spatial_partition(
x, FLAGS.sampled_2d_slices,
image_nx_dim, image_ny_dim,
FLAGS.n_base_filters * (2**depth),
dropout_keep_p,
FLAGS.with_batch_norm,
is_training,
'conv_{}_{}'.format(depth, n_conv),
variable_dtype,
'conv_down_{}_{}'.format(depth, n_conv))
all_bn_update_ops.extend(bn_update_ops)
levels.append(x)
if depth < FLAGS.network_depth - 1:
if FLAGS.sampled_2d_slices:
x = mtf.layers.max_pool2d(x, ksize=(2, 2))
else:
x = mtf.layers.max_pool3d(x, ksize=(2, 2, 2))
# add levels with up-convolution or up-sampling
for depth in range(FLAGS.network_depth - 1)[::-1]:
x = deconv_with_spatial_partition(
x, FLAGS.sampled_2d_slices, image_nx_dim, image_ny_dim,
FLAGS.n_base_filters * (2**depth),
FLAGS.dropout_keep_p,
is_training,
'conv_{}_{}'.format(depth, FLAGS.n_conv_per_block - 1),
variable_dtype, 'deconv_{}_0'.format(depth))
x = mtf.concat(
[x, levels[depth]],
concat_dim_name='conv_{}_{}'.format(depth, FLAGS.n_conv_per_block - 1))
for n_conv in range(FLAGS.n_conv_per_block):
x, bn_update_ops = conv_with_spatial_partition(
x, FLAGS.sampled_2d_slices,
image_nx_dim, image_ny_dim,
FLAGS.n_base_filters * (2**depth),
FLAGS.dropout_keep_p,
FLAGS.with_batch_norm,
is_training,
'conv_{}_{}'.format(depth, n_conv),
variable_dtype,
'conv_up_{}_{}'.format(depth, n_conv))
all_bn_update_ops.extend(bn_update_ops)
# no dropout in the final layer.
if FLAGS.sampled_2d_slices:
y = mtf.layers.conv2d_with_blocks(
x, mtf.Dimension('label_c', FLAGS.label_c),
filter_size=(1, 1), strides=(1, 1), padding='SAME',
h_blocks_dim=image_nx_dim, w_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name='final_conv_{}'.format(FLAGS.label_c),
)
else:
y = mtf.layers.conv3d_with_blocks(
x, mtf.Dimension('label_c', FLAGS.label_c),
filter_size=(1, 1, 1), strides=(1, 1, 1), padding='SAME',
d_blocks_dim=image_nx_dim, h_blocks_dim=image_ny_dim,
variable_dtype=variable_dtype,
name='final_conv_{}'.format(FLAGS.label_c),
)
# use mtf.constant to make sure there is no CPU-side constants.
def scalar(v, dtype):
return mtf.constant(mesh, v, shape=[], dtype=dtype)
argmax_t = mtf.argmax(t, label_c_dim)
liver_t = mtf.cast(mtf.equal(argmax_t, scalar(1, tf.int32)), mtf_dtype)
lesion_t = mtf.cast(mtf.equal(argmax_t, scalar(2, tf.int32)), mtf_dtype)
argmax_y = mtf.argmax(y, label_c_dim)
lesion_y = mtf.cast(mtf.equal(argmax_y, scalar(2, tf.int32)), mtf_dtype)
# summary of class ratios.
lesion_pred_ratio = mtf.reduce_mean(lesion_y)
lesion_label_ratio = mtf.reduce_mean(lesion_t)
# summary of accuracy.
accuracy = mtf.reduce_mean(mtf.cast(mtf.equal(argmax_y, argmax_t), mtf_dtype))
# Cross-entropy loss. Up-weight the liver region.
pixel_loss = mtf.layers.softmax_cross_entropy_with_logits(y, t, label_c_dim)
pixel_weight = scalar(1, mtf_dtype) + \
liver_t * scalar(FLAGS.xen_liver_weight - 1, mtf_dtype) + \
lesion_t * scalar(FLAGS.xen_lesion_weight - FLAGS.xen_liver_weight,
mtf_dtype)
loss_xen = mtf.reduce_mean(pixel_loss * pixel_weight)
# Dice loss
y_prob = mtf.softmax(y, reduced_dim=label_c_dim)
lesion_prob = mtf.reduce_sum(mtf.slice(y_prob, 2, 1, 'label_c'),
reduced_dim=mtf.Dimension('label_c', 1))
prob_intersect = mtf.reduce_sum(lesion_prob * lesion_t,
output_shape=mtf.Shape([batch_dim]))
prob_area_sum = mtf.reduce_sum(lesion_prob + lesion_t,
output_shape=mtf.Shape([batch_dim]))
loss_dice_per_case = mtf.reduce_mean(
scalar(-2, mtf_dtype) * prob_intersect / (
prob_area_sum + scalar(FLAGS.dice_epsilon, mtf_dtype)))
loss_dice_global = scalar(-2, mtf_dtype) * mtf.reduce_sum(prob_intersect) / (
mtf.reduce_sum(prob_area_sum) + scalar(FLAGS.dice_epsilon, mtf_dtype))
loss_dice = (loss_dice_per_case + loss_dice_global) * scalar(0.5, mtf_dtype)
loss = scalar(FLAGS.dice_loss_weight, mtf_dtype) * loss_dice + scalar(
1 - FLAGS.dice_loss_weight, mtf_dtype) * loss_xen
intersect = mtf.reduce_sum(lesion_y * lesion_t,
output_shape=mtf.Shape([batch_dim]))
area_sum = mtf.reduce_sum(lesion_y + lesion_t,
output_shape=mtf.Shape([batch_dim]))
# summary of dice.
dice_per_case = mtf.reduce_mean(scalar(2, mtf_dtype) * intersect / (
area_sum + scalar(0.000001, mtf_dtype)))
dice_global = scalar(2, mtf_dtype) * mtf.reduce_sum(intersect) / (
mtf.reduce_sum(area_sum) + scalar(0.000001, mtf_dtype))
eval_metrics = {
'lesion_pred_ratio': lesion_pred_ratio,
'lesion_label_ratio': lesion_label_ratio,
'accuracy_of_all_classes': accuracy,
'lesion_dice_per_case': dice_per_case,
'lesion_dice_global': dice_global,
'loss_xen': loss_xen,
'loss_dice': loss_dice,
'loss_dice_per_case': loss_dice_per_case,
'loss_dice_global': loss_dice_global,
}
if FLAGS.sampled_2d_slices:
y_prob_downsampled = mtf.layers.avg_pool2d(
y_prob, ksize=(FLAGS.pred_downsample,) * 2)
if FLAGS.output_ground_truth:
lesion_gt_downsampled = mtf.layers.avg_pool2d(
mtf.slice(t, 2, 1, 'label_c'), ksize=(FLAGS.pred_downsample,) * 2)
else:
y_prob_downsampled = mtf.layers.avg_pool3d(
y_prob, ksize=(FLAGS.pred_downsample,) * 3)
if FLAGS.output_ground_truth:
lesion_gt_downsampled = mtf.layers.avg_pool3d(
mtf.slice(t, 2, 1, 'label_c'), ksize=(FLAGS.pred_downsample,) * 3)
liver_prob_downsampled = mtf.slice(y_prob_downsampled, 1, 1, 'label_c')
lesion_prob_downsampled = mtf.slice(y_prob_downsampled, 2, 1, 'label_c')
preds = [
mtf.reduce_sum(liver_prob_downsampled,
reduced_dim=mtf.Dimension('label_c', 1)),
mtf.reduce_sum(lesion_prob_downsampled,
reduced_dim=mtf.Dimension('label_c', 1))]
if FLAGS.output_ground_truth:
preds.append(mtf.reduce_sum(
lesion_gt_downsampled, reduced_dim=mtf.Dimension('label_c', 1)))
preds.extend([intersect, area_sum])
return preds, loss, eval_metrics, all_bn_update_ops