|
| 1 | +""" |
| 2 | +demo example of mipt in tc style |
| 3 | +""" |
| 4 | +from functools import partial |
| 5 | +import time |
| 6 | +import numpy as np |
| 7 | +from scipy import stats |
| 8 | +import tensorcircuit as tc |
| 9 | + |
| 10 | +K = tc.set_backend("jax") |
| 11 | +# tf backend is slow (at least on cpu) |
| 12 | + |
| 13 | + |
| 14 | +@partial(K.jit, static_argnums=(2, 3, 4)) |
| 15 | +def circuit_output(random_matrix, status, n, d, p): |
| 16 | + """ |
| 17 | + mipt circuit |
| 18 | +
|
| 19 | + :param random_matrix: a float or complex tensor containing 4*4 random haar matrix wth size [d*n, 4, 4] |
| 20 | + :type random_matrix: _type_ |
| 21 | + :param status: a int tensor with element in 0 or 1 or 2 (no meausrement) with size d*n |
| 22 | + :type status: _type_ |
| 23 | + :param n: number of qubits |
| 24 | + :type n: _type_ |
| 25 | + :param d: number of depth |
| 26 | + :type d: _type_ |
| 27 | + :param p: measurement ratio |
| 28 | + :type p: float |
| 29 | + :return: output state |
| 30 | + """ |
| 31 | + random_matrix = K.reshape(random_matrix, [d, n, 4, 4]) |
| 32 | + status = K.reshape(status, [d, n]) |
| 33 | + inputs = None |
| 34 | + for j in range(d): |
| 35 | + if inputs is None: |
| 36 | + c = tc.Circuit(n) |
| 37 | + else: |
| 38 | + c = tc.Circuit(n, inputs=inputs) |
| 39 | + for i in range(0, n, 2): |
| 40 | + c.unitary(i, (i + 1) % n, unitary=random_matrix[j, i]) |
| 41 | + for i in range(1, n, 2): |
| 42 | + c.unitary(i, (i + 1) % n, unitary=random_matrix[j, i]) |
| 43 | + inputs = c.state() |
| 44 | + c = tc.Circuit(n, inputs=inputs) |
| 45 | + for i in range(n): |
| 46 | + c.general_kraus( |
| 47 | + [ |
| 48 | + np.sqrt(p) * np.array([[1.0, 0], [0, 0]]), |
| 49 | + np.sqrt(p) * np.array([[0, 0], [0, 1.0]]), |
| 50 | + np.sqrt(1 - p) * np.eye(2), |
| 51 | + ], |
| 52 | + i, |
| 53 | + status=status[j, i], |
| 54 | + ) |
| 55 | + inputs = c.state() |
| 56 | + c = tc.Circuit(n, inputs=inputs) |
| 57 | + inputs = c.state() |
| 58 | + inputs /= K.norm(inputs) |
| 59 | + return inputs |
| 60 | + |
| 61 | + |
| 62 | +@partial(K.jit, static_argnums=(2, 3, 4)) |
| 63 | +def cals(random_matrix, status, n, d, p): |
| 64 | + state = circuit_output(random_matrix, status, n, d, p) |
| 65 | + rho = tc.quantum.reduced_density_matrix(state, cut=[i for i in range(n // 2)]) |
| 66 | + return tc.quantum.entropy(rho), tc.quantum.renyi_entropy(rho, k=2) |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == "__main__": |
| 70 | + n = 12 |
| 71 | + d = 12 |
| 72 | + st = np.random.uniform(size=[d * n]) |
| 73 | + ## assume all X gate instead |
| 74 | + rm = [stats.unitary_group.rvs(4) for _ in range(d * n)] |
| 75 | + rm = [r / np.linalg.det(r) for r in rm] |
| 76 | + rm = np.stack(rm) |
| 77 | + time0 = time.time() |
| 78 | + print(cals(rm, st, n, d, 0.1)) |
| 79 | + time1 = time.time() |
| 80 | + st = np.random.uniform(size=[d * n]) |
| 81 | + print(cals(rm, st, n, d, 0.1)) |
| 82 | + time2 = time.time() |
| 83 | + print(f"compiling time {time1-time0}, running time {time2-time1}") |
0 commit comments