|
| 1 | +""" |
| 2 | +Schrodinger-Heisenberg quantum variational eigensolver (SHVQE) with DQAS-style optimization. |
| 3 | +
|
| 4 | +DQAS part is modified from: examples/clifford_optimization.py |
| 5 | +""" |
| 6 | + |
| 7 | +import sys |
| 8 | +sys.path.insert(0, "../") |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import tensorflow as tf |
| 12 | + |
| 13 | +import tensorcircuit as tc |
| 14 | +from tensorcircuit.applications.vqes import construct_matrix_v3 |
| 15 | + |
| 16 | +ctype, rtype = tc.set_dtype("complex64") |
| 17 | +K = tc.set_backend("tensorflow") |
| 18 | + |
| 19 | +n = 10 # the number of qubits (must be even for consistency later) |
| 20 | +ncz = 2 # number of cz layers in Schrodinger circuit |
| 21 | +nlayersq = ncz + 1 # Schrodinger parameter layers |
| 22 | + |
| 23 | +# training setup |
| 24 | +epochs = 1000 |
| 25 | +batch = 1000 |
| 26 | + |
| 27 | +# Hamiltonian |
| 28 | +h6h = np.load("./h6_hamiltonian.npy") # reported in 0.99 A |
| 29 | +hamiltonian = construct_matrix_v3(h6h.tolist()) |
| 30 | + |
| 31 | +def hybrid_ansatz(structure, paramq, preprocess="direct", train=True): |
| 32 | + """_summary_ |
| 33 | +
|
| 34 | + Parameters |
| 35 | + ---------- |
| 36 | + structure : K.Tensor, (n//2, 2) |
| 37 | + parameters to decide graph structure of Clifford circuits |
| 38 | + paramq : K.Tensor, (nlayersq, n, 3) |
| 39 | + parameters in quantum variational circuits, the last layer for Heisenberg circuits |
| 40 | + preprocess : str, optional |
| 41 | + preprocess, by default "direct" |
| 42 | +
|
| 43 | + Returns |
| 44 | + ------- |
| 45 | + K.Tensor, [1,] |
| 46 | + loss value |
| 47 | + """ |
| 48 | + c = tc.Circuit(n) |
| 49 | + if preprocess == "softmax": |
| 50 | + structure = K.softmax(structure, axis=-1) |
| 51 | + elif preprocess == "most": |
| 52 | + structure = K.onehot(K.argmax(structure, axis=-1), num=2) |
| 53 | + elif preprocess == "direct": |
| 54 | + pass |
| 55 | + |
| 56 | + structure = K.cast(structure, ctype) |
| 57 | + structure = tf.reshape(structure, shape=[n//2, 2]) |
| 58 | + |
| 59 | + # quantum variational in Schrodinger part, first consider a ring topol |
| 60 | + for j in range(nlayersq): |
| 61 | + if j !=0 and j!=nlayersq-1: |
| 62 | + for i in range(j%2,n,2): |
| 63 | + c.cz(i, (i+1)%n) |
| 64 | + for i in range(n): |
| 65 | + c.rx(i, theta=paramq[j, i, 0]) |
| 66 | + c.ry(i, theta=paramq[j, i, 1]) |
| 67 | + c.rz(i, theta=paramq[j, i, 2]) |
| 68 | + |
| 69 | + # Clifford part, which is actually virtual |
| 70 | + if train: |
| 71 | + for j in range(0,n//2-1): |
| 72 | + dis = j + 1 |
| 73 | + for i in range(0,n): |
| 74 | + c.unitary( |
| 75 | + i, |
| 76 | + (i+dis) % n, |
| 77 | + unitary=structure[j, 0] * tc.gates.ii().tensor |
| 78 | + + structure[j, 1] * tc.gates.cz().tensor, |
| 79 | + ) |
| 80 | + |
| 81 | + for i in range(0,n//2): |
| 82 | + c.unitary( |
| 83 | + i, |
| 84 | + i + n//2, |
| 85 | + unitary=structure[n//2-1, 0] * tc.gates.ii().tensor |
| 86 | + + structure[n//2-1, 1] * tc.gates.cz().tensor, |
| 87 | + ) |
| 88 | + else: # if not for training, we just put nontrivial gates |
| 89 | + for j in range(0,n//2-1): |
| 90 | + dis = j + 1 |
| 91 | + for i in range(0,n): |
| 92 | + if structure[j, 1]==1: |
| 93 | + c.cz(i, (i+dis) % n) |
| 94 | + |
| 95 | + for i in range(0,n//2): |
| 96 | + if structure[j, 1]==1: |
| 97 | + c.cz(i, i + n//2) |
| 98 | + |
| 99 | + return c |
| 100 | + |
| 101 | +def hybrid_vqe(structure, paramq, preprocess="direct"): |
| 102 | + """_summary_ |
| 103 | +
|
| 104 | + Parameters |
| 105 | + ---------- |
| 106 | + structure : K.Tensor, (n//2, 2) |
| 107 | + parameters to decide graph structure of Clifford circuits |
| 108 | + paramq : K.Tensor, (nlayersq, n, 3) |
| 109 | + parameters in quantum variational circuits, the last layer for Heisenberg circuits |
| 110 | + preprocess : str, optional |
| 111 | + preprocess, by default "direct" |
| 112 | +
|
| 113 | + Returns |
| 114 | + ------- |
| 115 | + K.Tensor, [1,] |
| 116 | + loss value |
| 117 | + """ |
| 118 | + c = hybrid_ansatz(structure, paramq, preprocess) |
| 119 | + return tc.templates.measurements.operator_expectation(c, hamiltonian) |
| 120 | + |
| 121 | +def sampling_from_structure(structures, batch=1): |
| 122 | + ch = structures.shape[-1] |
| 123 | + prob = K.softmax(K.real(structures), axis=-1) |
| 124 | + prob = K.reshape(prob, [-1, ch]) |
| 125 | + p = prob.shape[0] |
| 126 | + r = np.stack( |
| 127 | + np.array( |
| 128 | + [np.random.choice(ch, p=K.numpy(prob[i]), size=[batch]) for i in range(p)] |
| 129 | + ) |
| 130 | + ) |
| 131 | + return r.transpose() |
| 132 | + |
| 133 | + |
| 134 | +@K.jit |
| 135 | +def best_from_structure(structures): |
| 136 | + return K.argmax(structures, axis=-1) |
| 137 | + |
| 138 | + |
| 139 | +def nmf_gradient(structures, oh): |
| 140 | + """ compute the Monte Carlo gradient with respect of naive mean-field probabilistic model |
| 141 | +
|
| 142 | + Parameters |
| 143 | + ---------- |
| 144 | + structures : K.Tensor, (n//2, ch) |
| 145 | + structure parameter for single- or two-qubit gates |
| 146 | + oh : K.Tensor, (n//2, ch), onehot |
| 147 | + a given structure sampled via strcuture parameters (in main function) |
| 148 | +
|
| 149 | + Returns |
| 150 | + ------- |
| 151 | + K.Tensor, (n//2 * 2, ch) == (n, ch) |
| 152 | + MC gradients |
| 153 | + """ |
| 154 | + choice = K.argmax(oh, axis=-1) |
| 155 | + prob = K.softmax(K.real(structures), axis=-1) |
| 156 | + indices = K.transpose( |
| 157 | + K.stack([K.cast(tf.range(structures.shape[0]), "int64"), choice]) |
| 158 | + ) |
| 159 | + prob = tf.gather_nd(prob, indices) |
| 160 | + prob = K.reshape(prob, [-1, 1]) |
| 161 | + prob = K.tile(prob, [1, structures.shape[-1]]) |
| 162 | + |
| 163 | + return K.real( |
| 164 | + tf.tensor_scatter_nd_add( |
| 165 | + tf.cast(-prob, dtype=ctype), |
| 166 | + indices, |
| 167 | + tf.ones([structures.shape[0]], dtype=ctype), |
| 168 | + ) |
| 169 | + ) # in oh : 1-p, not in oh : -p |
| 170 | + |
| 171 | +# vmap for a batch of structures |
| 172 | +nmf_gradient_vmap = K.jit( |
| 173 | + K.vmap(nmf_gradient, vectorized_argnums=1)) |
| 174 | + |
| 175 | +# vvag for a batch of structures |
| 176 | +vvag_hybrid = K.jit( |
| 177 | + K.vectorized_value_and_grad(hybrid_vqe, vectorized_argnums=(0,), argnums=(1,)), |
| 178 | + static_argnums=(2,)) |
| 179 | + |
| 180 | +def train_hybrid(stddev=0.05, lr=None, epochs=2000, debug_step=50, batch=256, verbose=False): |
| 181 | + # params = K.implicit_randn([n//2, 2], stddev=stddev) |
| 182 | + params = K.ones([n//2, 2], dtype=float) |
| 183 | + paramq = K.implicit_randn([nlayersq, n, 3], stddev=stddev) * 2*np.pi |
| 184 | + if lr is None: |
| 185 | + lr = tf.keras.optimizers.schedules.ExponentialDecay(0.6, 100, 0.8) |
| 186 | + structure_opt = K.optimizer(tf.keras.optimizers.Adam(lr)) |
| 187 | + |
| 188 | + avcost = 0 |
| 189 | + avcost2 = 0 |
| 190 | + loss_history = [] |
| 191 | + for epoch in range(epochs): # iteration to update strcuture param |
| 192 | + # random sample some structures |
| 193 | + batched_stucture = K.onehot( |
| 194 | + sampling_from_structure(params, batch=batch), |
| 195 | + num=params.shape[-1], |
| 196 | + ) |
| 197 | + vs, gq = vvag_hybrid(batched_stucture, paramq, "direct") |
| 198 | + loss_history.append(np.min(vs)) |
| 199 | + gq = gq[0] |
| 200 | + avcost = K.mean(vs) # average cost of the batch |
| 201 | + gs = nmf_gradient_vmap(params, batched_stucture) # \nabla lnp |
| 202 | + gs = K.mean(K.reshape(vs - avcost2, [-1, 1, 1]) * gs, axis=0) |
| 203 | + # avcost2 is averaged cost in the last epoch |
| 204 | + avcost2 = avcost |
| 205 | + |
| 206 | + [params, paramq] = structure_opt.update([gs, gq], [params, paramq]) |
| 207 | + if epoch % debug_step == 0 or epoch == epochs - 1: |
| 208 | + print("----------epoch %s-----------" % epoch) |
| 209 | + print( |
| 210 | + "batched average loss: ", |
| 211 | + np.mean(vs), |
| 212 | + "minimum candidate loss: ", |
| 213 | + np.min(vs), |
| 214 | + ) |
| 215 | + |
| 216 | + # max over choices, min over layers and qubits |
| 217 | + minp = tf.math.reduce_min(tf.math.reduce_max(tf.math.softmax(params), axis=-1)) |
| 218 | + if minp > 0.5: |
| 219 | + print("probability converged") |
| 220 | + |
| 221 | + if verbose: |
| 222 | + print( |
| 223 | + "strcuture parameter: \n", |
| 224 | + params.numpy() |
| 225 | + ) |
| 226 | + |
| 227 | + cand_preset = best_from_structure(params) |
| 228 | + print(cand_preset) |
| 229 | + print("current recommendation loss: ", hybrid_vqe(params, paramq, "most")) |
| 230 | + |
| 231 | + loss_history = np.array(loss_history) |
| 232 | + return hybrid_vqe(params, paramq, "most"), params, paramq, loss_history |
| 233 | + |
| 234 | + |
| 235 | +print('Train hybrid.') |
| 236 | +ee, params, paramq, loss_history = train_hybrid(epochs=epochs, batch=batch, verbose=True) |
| 237 | +print('Energy:', ee) |
0 commit comments