|
| 1 | +import sys |
| 2 | +import pennylane as qml |
| 3 | +import tensorflow as tf |
| 4 | +import numpy as np |
| 5 | +import utils |
| 6 | +import time |
| 7 | +import cpuinfo |
| 8 | +import datetime |
| 9 | +import os |
| 10 | +import jax |
| 11 | +import uuid |
| 12 | +import tensorcircuit as tc |
| 13 | + |
| 14 | +tc.set_backend("tensorflow") |
| 15 | + |
| 16 | + |
| 17 | +def pennylane_benchmark( |
| 18 | + uuid, |
| 19 | + nwires, |
| 20 | + nlayer, |
| 21 | + nitrs, |
| 22 | + timeLimit, |
| 23 | + isgpu, |
| 24 | + train_img, |
| 25 | + test_img, |
| 26 | + train_lbl, |
| 27 | + test_lbl, |
| 28 | + nbatch, |
| 29 | + check_loop, |
| 30 | +): |
| 31 | + meta = {} |
| 32 | + |
| 33 | + if isgpu == 0: |
| 34 | + os.environ["CUDA_VISIBLE_DEVICES"] = "-1" |
| 35 | + meta["isgpu"] = "off" |
| 36 | + |
| 37 | + else: |
| 38 | + gpu = tf.config.list_physical_devices("GPU") |
| 39 | + tf.config.experimental.set_memory_growth(device=gpu[0], enable=True) |
| 40 | + meta["isgpu"] = "on" |
| 41 | + meta["Gpuinfo"] = utils.gpuinfo() |
| 42 | + |
| 43 | + meta["Software"] = "pennylane" |
| 44 | + meta["Cpuinfo"] = cpuinfo.get_cpu_info()["brand_raw"] |
| 45 | + meta["Version"] = { |
| 46 | + "sys": sys.version, |
| 47 | + "tensorflow": tf.__version__, |
| 48 | + "pennylane": qml.__version__, |
| 49 | + "numpy": np.__version__, |
| 50 | + } |
| 51 | + meta["QML test parameters"] = { |
| 52 | + "nQubits": nwires, |
| 53 | + "nlayer": nlayer, |
| 54 | + "nitrs": nitrs, |
| 55 | + "timeLimit": timeLimit, |
| 56 | + "nbatch": nbatch, |
| 57 | + } |
| 58 | + meta["UUID"] = uuid |
| 59 | + meta["Benchmark Time"] = ( |
| 60 | + datetime.datetime.now().astimezone().strftime("%Y-%m-%d %H:%M %Z") |
| 61 | + ) |
| 62 | + meta["Results"] = {} |
| 63 | + |
| 64 | + dev = qml.device("default.qubit.jax", wires=nwires) |
| 65 | + |
| 66 | + @qml.qnode(dev, interface="jax") |
| 67 | + def jax_expval(img, params): |
| 68 | + for i in range(nwires - 1): |
| 69 | + qml.RX(img[i] * np.pi, wires=i) |
| 70 | + for j in range(nlayer): |
| 71 | + for i in range(nwires - 1): |
| 72 | + qml.IsingZZ(params[i + j * 2 * nwires], wires=[i, nwires - 1]) |
| 73 | + for i in range(nwires): |
| 74 | + qml.RX(params[nwires + i + j * 2 * nwires], wires=i) |
| 75 | + return qml.expval(qml.Hamiltonian([1.0], [qml.PauliZ(nwires - 1)], True)) |
| 76 | + |
| 77 | + def loss(img, lbl, params): |
| 78 | + return (lbl - jax_expval(img, params) * 0.5 - 0.5) ** 2 |
| 79 | + |
| 80 | + vag = jax.value_and_grad(loss, argnums=(2,)) |
| 81 | + vag = jax.jit(vag) |
| 82 | + params = jax.numpy.array(np.random.normal(size=[nlayer * 2 * nwires])) |
| 83 | + |
| 84 | + def f(train_imgs, train_lbls): |
| 85 | + e = [] |
| 86 | + for i in range(len(train_imgs)): |
| 87 | + ee, grad = vag(train_imgs[i], train_lbls[i], params) |
| 88 | + e.append(ee) |
| 89 | + return np.mean(e) |
| 90 | + |
| 91 | + if check_loop: |
| 92 | + ct, it, Nitrs = utils.qml_timing(f, nbatch, nitrs, timeLimit) |
| 93 | + meta["Results"]["jax_loop"] = { |
| 94 | + "Construction time": ct, |
| 95 | + "Iteration time": it, |
| 96 | + "# of actual iterations": Nitrs, |
| 97 | + } |
| 98 | + _vloss = jax.vmap(loss, (0, 0, None), 0) |
| 99 | + |
| 100 | + def vloss(img, lbl, params): |
| 101 | + return jax.numpy.mean(_vloss(img, lbl, params)) |
| 102 | + |
| 103 | + vag = jax.value_and_grad(vloss, argnums=(2,)) |
| 104 | + params = jax.numpy.array(np.random.normal(size=[nlayer * 2 * nwires])) |
| 105 | + |
| 106 | + # def f(train_imgs, train_lbls): |
| 107 | + # e, grad = vag(jax.numpy.array(train_imgs), jax.numpy.array(train_lbls), params) |
| 108 | + # return e |
| 109 | + |
| 110 | + # ct, it, Nitrs = utils.qml_timing(f, nbatch, nitrs, timeLimit) |
| 111 | + # meta["Results"]["jax_vmap"] = { |
| 112 | + # "Construction time": ct, |
| 113 | + # "Iteration time": it, |
| 114 | + # "# of actual iterations": Nitrs, |
| 115 | + # } |
| 116 | + vag = jax.jit(vag) |
| 117 | + |
| 118 | + def f(train_imgs, train_lbls): |
| 119 | + e, grad = vag(jax.numpy.array(train_imgs), jax.numpy.array(train_lbls), params) |
| 120 | + return e |
| 121 | + |
| 122 | + ct, it, Nitrs = utils.qml_timing(f, nbatch, nitrs, timeLimit) |
| 123 | + meta["Results"]["jax_vmap"] = { |
| 124 | + "Construction time": ct, |
| 125 | + "Iteration time": it, |
| 126 | + "# of actual iterations": Nitrs, |
| 127 | + } |
| 128 | + |
| 129 | + print(meta) # in case OOM in tf case |
| 130 | + |
| 131 | + ## tf device below |
| 132 | + |
| 133 | + dev = qml.device("default.qubit.tf", wires=nwires) |
| 134 | + |
| 135 | + @qml.qnode(dev, interface="tf") |
| 136 | + def tf_value(img, params): |
| 137 | + for i in range(nwires - 1): |
| 138 | + qml.RX(img[i] * np.pi, wires=i) |
| 139 | + for j in range(nlayer): |
| 140 | + for i in range(nwires - 1): |
| 141 | + qml.IsingZZ(params[i + j * 2 * nwires], wires=[i, nwires - 1]) |
| 142 | + for i in range(nwires): |
| 143 | + qml.RX(params[nwires + i + j * 2 * nwires], wires=i) |
| 144 | + return qml.expval(qml.Hamiltonian([1.0], [qml.PauliZ(nwires - 1)], True)) |
| 145 | + |
| 146 | + @tf.function |
| 147 | + def tf_vag(img, lbl, params): |
| 148 | + with tf.GradientTape() as t: |
| 149 | + t.watch(params) |
| 150 | + loss = (tf_value(img, params) * 0.5 + 0.5 - lbl) ** 2 |
| 151 | + return loss, t.gradient(loss, params) |
| 152 | + |
| 153 | + params = tf.Variable(np.random.normal(size=[nlayer * 2 * nwires]), dtype=tf.float64) |
| 154 | + a = tf.Variable(train_img[0]) |
| 155 | + b = tf.Variable(train_lbl[0], dtype=tf.float64) |
| 156 | + opt = tf.keras.optimizers.Adam(0.01) |
| 157 | + |
| 158 | + def f(train_imgs, train_lbls): |
| 159 | + loss_ = [] |
| 160 | + grad_ = [] |
| 161 | + for i in range(len(train_imgs)): |
| 162 | + a.assign(train_imgs[i]) |
| 163 | + b.assign(train_lbls[i]) |
| 164 | + loss, grad = tf_vag(a, b, params) |
| 165 | + loss_.append(loss) |
| 166 | + grad_.append(grad) |
| 167 | + opt.apply_gradients(zip([tf.reduce_mean(grad_, axis=0)], [params])) |
| 168 | + return np.mean(loss_) |
| 169 | + |
| 170 | + if check_loop: |
| 171 | + ct, it, Nitrs = utils.qml_timing(f, nbatch, nitrs, timeLimit) |
| 172 | + meta["Results"]["tf_loop"] = { |
| 173 | + "Construction time": ct, |
| 174 | + "Iteration time": it, |
| 175 | + "# of actual iterations": Nitrs, |
| 176 | + } |
| 177 | + |
| 178 | + a = tf.Variable(train_img[:nbatch], dtype=tf.float64) |
| 179 | + b = tf.Variable(train_lbl[:nbatch], dtype=tf.float64) |
| 180 | + |
| 181 | + opt = tf.keras.optimizers.Adam(0.01) |
| 182 | + |
| 183 | + @tf.function |
| 184 | + @qml.qnode(dev, interface="tf") |
| 185 | + def tfvalue(img, lbl, params): |
| 186 | + for i in range(nwires - 1): |
| 187 | + qml.RX(img[i] * np.pi, wires=i) |
| 188 | + for j in range(nlayer): |
| 189 | + for i in range(nwires - 1): |
| 190 | + qml.IsingZZ(params[i + j * 2 * nwires], wires=[i, nwires - 1]) |
| 191 | + for i in range(nwires): |
| 192 | + qml.RX(params[nwires + i + j * 2 * nwires], wires=i) |
| 193 | + return qml.expval(qml.Hamiltonian([1.0], [qml.PauliZ(nwires - 1)], True)) |
| 194 | + |
| 195 | + def tf_loss(img, lbl, params): |
| 196 | + loss = (tf_value(img, params) * 0.5 + 0.5 - lbl) ** 2 |
| 197 | + return loss |
| 198 | + |
| 199 | + tf_vvag = tf.function( |
| 200 | + tc.backend.vvag(tf_loss, vectorized_argnums=(0, 1), argnums=2) |
| 201 | + ) |
| 202 | + |
| 203 | + def f(train_imgs, train_lbls): |
| 204 | + a.assign(train_imgs) |
| 205 | + b.assign(train_lbls) |
| 206 | + losses, grad = tf_vvag(a, b, params) |
| 207 | + opt.apply_gradients(zip([grad], [params])) |
| 208 | + return tf.reduce_mean(losses) |
| 209 | + |
| 210 | + ct, it, Nitrs = utils.qml_timing(f, nbatch, nitrs, timeLimit) |
| 211 | + meta["Results"]["tf_vmap"] = { |
| 212 | + "Construction time": ct, |
| 213 | + "Iteration time": it, |
| 214 | + "# of actual iterations": Nitrs, |
| 215 | + } |
| 216 | + print(meta) |
| 217 | + return meta |
| 218 | + |
| 219 | + |
| 220 | +if __name__ == "__main__": |
| 221 | + _uuid = str(uuid.uuid4()) |
| 222 | + n, nlayer, nitrs, timeLimit, isgpu, minus, path, check, nbatch = utils.arg( |
| 223 | + check=True, qml=True |
| 224 | + ) |
| 225 | + train_img, test_img, train_lbl, test_lbl = utils.mnist_data_preprocessing(n - 1) |
| 226 | + if check == 1: |
| 227 | + checkbool = True |
| 228 | + else: |
| 229 | + checkbool = False |
| 230 | + results = pennylane_benchmark( |
| 231 | + _uuid, |
| 232 | + n, |
| 233 | + nlayer, |
| 234 | + nitrs, |
| 235 | + timeLimit, |
| 236 | + isgpu, |
| 237 | + train_img, |
| 238 | + test_img, |
| 239 | + train_lbl, |
| 240 | + test_lbl, |
| 241 | + nbatch, |
| 242 | + checkbool, |
| 243 | + ) |
| 244 | + utils.save(results, _uuid, path) |
0 commit comments