-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathvariational_dynamics_generalized.py
147 lines (116 loc) · 4.15 KB
/
variational_dynamics_generalized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Variational wavefunctions based on variational circuits and its dynamics.
"""
# https://arxiv.org/pdf/1812.08767.pdf
# Eq 13, 14, based on discussion:
# https://github.com/tencent-quantum-lab/tensorcircuit/discussions/22
import sys
import time
sys.path.insert(0, "../")
import numpy as np
import tensorcircuit as tc
tc.set_backend("jax") # can set tensorflow backend or jax backend
tc.set_dtype("complex64")
# the default precision is complex64, can change to complex128 for double precision
@tc.backend.jit
def variational_wfn(theta, psi0):
theta = tc.backend.reshape(theta, [l, N, 2])
c = tc.Circuit(N, inputs=psi0)
for i in range(0, l):
for j in range(N - 1):
c.exp1(j, j + 1, theta=theta[i, j, 0], unitary=tc.gates._zz_matrix)
for j in range(N):
c.rx(j, theta=theta[i, j, 1])
return c.state()
ppsioverptheta = tc.backend.jit(tc.backend.jacfwd(variational_wfn, argnums=0))
# compute \partial psi /\partial theta, i.e. jacobian of wfn
def _vdot(i, j):
return tc.backend.tensordot(tc.backend.conj(i), j, 1)
@tc.backend.jit
def lhs_matrix(theta, psi0):
psi = variational_wfn(theta, psi0)
def ij(i, j):
return _vdot(i, j) + _vdot(i, psi) * _vdot(j, psi)
vij = tc.backend.vmap(ij, vectorized_argnums=0)
vvij = tc.backend.vmap(vij, vectorized_argnums=1)
jacobian = ppsioverptheta(theta, psi0=psi0)
jacobian = tc.backend.transpose(jacobian)
fim = vvij(jacobian, jacobian)
lhs = tc.backend.real(fim)
return lhs
@tc.backend.jit
def rhs_vector(theta, psi0):
def energy1(theta, psi0):
w = variational_wfn(theta, psi0)
wl = tc.backend.conj(w)
wr = tc.backend.stop_gradient(w)
wl = tc.backend.reshape(wl, [1, -1])
wr = tc.backend.reshape(wr, [-1, 1])
e = wl @ h @ wr # <\partial psi0|H| psi0>
return tc.backend.real(e)[0, 0]
def energy2(theta, psi0):
w = variational_wfn(theta, psi0)
wr0 = tc.backend.stop_gradient(w)
wr0 = tc.backend.reshape(wr0, [-1, 1])
wl0 = tc.backend.stop_gradient(w)
wl0 = tc.backend.conj(wl0)
wl0 = tc.backend.reshape(wl0, [1, -1])
e0 = wl0 @ h @ wr0 # <psi0| H | psi0>
wl = tc.backend.conj(w)
wl = tc.backend.reshape(wl, [1, -1])
w0 = wl @ wr0 # <\partial psi0| psi0>
return tc.backend.real((w0 * e0)[0, 0])
eg1 = tc.backend.grad(energy1, argnums=0)
eg2 = tc.backend.grad(energy2, argnums=0)
rhs1 = eg1(theta, psi0)
rhs1 = tc.backend.imag(rhs1)
rhs2 = eg2(theta, psi0)
rhs2 = tc.backend.imag(rhs2) # should be a imaginary number
rhs = rhs1 - rhs2
return rhs
@tc.backend.jit
def update(theta, lhs, rhs, tau):
# protection
eps = 1e-3
lhs += eps * tc.backend.eye(l * N * 2, dtype=lhs.dtype)
dtheta = tc.backend.cast(
tau * tc.backend.solve(lhs, rhs, assume_a="sym"), dtype=theta.dtype
)
return dtheta + theta
if __name__ == "__main__":
N = 10
l = 5
tau = 0.005
steps = 200
g = tc.templates.graphs.Line1D(N, pbc=False)
h = tc.quantum.heisenberg_hamiltonian(
g, hzz=1, hyy=0, hxx=0, hz=0, hx=1, hy=0, sparse=False
)
# TFIM Hamiltonian defined on lattice graph g (1D OBC chain)
h = tc.array_to_tensor(h)
psi0 = np.zeros(2**N)
psi0[0] = 1.0
psi0 = tc.array_to_tensor(psi0)
theta = np.zeros([l * N * 2])
theta = tc.array_to_tensor(theta)
time0 = time.time()
for n in range(steps):
psi = variational_wfn(theta, psi0)
lhs = lhs_matrix(theta, psi0)
rhs = rhs_vector(theta, psi0)
theta = update(theta, lhs, rhs, tau)
if n % 10 == 0:
time1 = time.time()
print(time1 - time0)
time0 = time1
psi_exact = tc.backend.expm(-1j * h * n * tau) @ tc.backend.reshape(
psi0, [-1, 1]
)
psi_exact = tc.backend.reshape(psi_exact, [-1])
print(
"time: %.2f" % (n * tau),
"exact:",
tc.expectation([tc.gates.z(), [0]], ket=psi_exact),
"variational:",
tc.expectation([tc.gates.z(), [0]], ket=psi),
)