-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathvqe_noisyopt.py
222 lines (177 loc) · 5.96 KB
/
vqe_noisyopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
VQE with finite measurement shot noise
"""
from functools import partial
import numpy as np
import optax
from noisyopt import minimizeCompass, minimizeSPSA
from tabulate import tabulate # pip install tabulate
import tensorcircuit as tc
from tensorcircuit import experimental as E
seed = 42
np.random.seed(seed)
K = tc.set_backend("jax")
# note this script only supports jax backend
n = 6
nlayers = 4
# initial value of the parameters
initial_value = np.random.uniform(size=[n * nlayers * 2])
result = {
"Algorithm / Optimization": ["Without Shot Noise", "With Shot Noise"],
"SPSA (Gradient Free)": [],
"Compass Search (Gradient Free)": [],
"Adam (Gradient based)": [],
}
# We use OBC 1D TFIM Hamiltonian in this script
ps = []
for i in range(n):
l = [0 for _ in range(n)]
l[i] = 1
ps.append(l)
# X_i
for i in range(n - 1):
l = [0 for _ in range(n)]
l[i] = 3
l[i + 1] = 3
ps.append(l)
# Z_i Z_i+1
w = [-1.0 for _ in range(n)] + [1.0 for _ in range(n - 1)]
def generate_circuit(param):
# construct the circuit ansatz
c = tc.Circuit(n)
for i in range(n):
c.H(i)
for j in range(nlayers):
for i in range(n - 1):
c.rzz(i, i + 1, theta=param[i, j, 0])
for i in range(n):
c.rx(i, theta=param[i, j, 1])
return c
def ps2xyz(psi):
# ps2xyz([1, 2, 2, 0]) = {"x": [0], "y": [1, 2], "z": []}
xyz = {"x": [], "y": [], "z": []}
for i, j in enumerate(psi):
if j == 1:
xyz["x"].append(i)
if j == 2:
xyz["y"].append(i)
if j == 3:
xyz["z"].append(i)
return xyz
@partial(K.jit, static_argnums=(2))
def exp_val(param, key, shots=1024):
# expectation with shot noise
# ps, w: H = \sum_i w_i ps_i
# describing the system Hamiltonian as a weighted sum of Pauli string
c = generate_circuit(param)
if isinstance(shots, int):
shots = [shots for _ in range(len(ps))]
loss = 0
for psi, wi, shot in zip(ps, w, shots):
key, subkey = K.random_split(key)
xyz = ps2xyz(psi)
loss += wi * c.sample_expectation_ps(**xyz, shots=shot, random_generator=subkey)
return K.real(loss)
@K.jit
def exp_val_analytical(param):
param = param.reshape(n, nlayers, 2)
c = generate_circuit(param)
loss = 0
for psi, wi in zip(ps, w):
xyz = ps2xyz(psi)
loss += wi * c.expectation_ps(**xyz)
return K.real(loss)
# 0. Exact result
hm = tc.quantum.PauliStringSum2COO(ps, w, numpy=True)
hm = K.to_dense(hm)
e, v = np.linalg.eigh(hm)
exact_gs_energy = e[0]
print("==================================================================")
print("Exact ground state energy: ", exact_gs_energy)
print("==================================================================")
# 1.1 VQE with numerically exact expectation: gradient free
print(">>> VQE without shot noise")
r = minimizeSPSA(
func=exp_val_analytical,
x0=initial_value,
niter=6000,
paired=False,
)
print(r)
print(">> SPSA converged as:", exp_val_analytical(r.x))
result["SPSA (Gradient Free)"].append(exp_val_analytical(r.x))
r = minimizeCompass(
func=exp_val_analytical,
x0=initial_value,
deltatol=0.1,
feps=1e-3,
paired=False,
)
print(r)
print(">> Compass converged as:", exp_val_analytical(r.x))
result["Compass Search (Gradient Free)"].append(exp_val_analytical(r.x))
# 1.2 VQE with numerically exact expectation: gradient based
exponential_decay_scheduler = optax.exponential_decay(
init_value=1e-2, transition_steps=500, decay_rate=0.9
)
opt = K.optimizer(optax.adam(exponential_decay_scheduler))
param = initial_value.reshape((n, nlayers, 2)) # zeros stall the gradient
exp_val_grad_analytical = K.jit(K.value_and_grad(exp_val_analytical))
for i in range(1000):
e, g = exp_val_grad_analytical(param)
param = opt.update(g, param)
if i % 100 == 99:
print(f"Expectation value at iteration {i}: {e}")
print(">> Adam converged as:", exp_val_grad_analytical(param)[0])
result["Adam (Gradient based)"].append(exp_val_grad_analytical(param)[0])
# 2.1 VQE with finite shot noise: gradient free
print("==================================================================")
print(">>> VQE with shot noise")
rkey = K.get_random_state(seed)
def exp_val_wrapper(param):
param = param.reshape(n, nlayers, 2)
global rkey
rkey, skey = K.random_split(rkey)
# maintain stateless randomness in scipy optimize interface
return exp_val(param, skey, shots=1024)
r = minimizeSPSA(
func=exp_val_wrapper,
x0=initial_value,
niter=6000,
paired=False,
)
print(r)
print(">> SPSA converged as:", exp_val_wrapper(r["x"]))
result["SPSA (Gradient Free)"].append(exp_val_wrapper(r["x"]))
r = minimizeCompass(
func=exp_val_wrapper,
x0=initial_value,
deltatol=0.1,
feps=1e-2,
paired=False,
)
print(r)
print(">> Compass converged as:", exp_val_wrapper(r["x"]))
result["Compass Search (Gradient Free)"].append(exp_val_wrapper(r["x"]))
# 2.2 VQE with finite shot noise: gradient based
exponential_decay_scheduler = optax.exponential_decay(
init_value=1e-2, transition_steps=500, decay_rate=0.9
)
opt = K.optimizer(optax.adam(exponential_decay_scheduler))
param = initial_value.reshape((n, nlayers, 2)) # zeros stall the gradient
exp_grad = E.parameter_shift_grad_v2(exp_val, argnums=0, random_argnums=1)
rkey = K.get_random_state(seed)
for i in range(1000):
rkey, skey = K.random_split(rkey)
g = exp_grad(param, skey)
param = opt.update(g, param)
if i % 100 == 99:
rkey, skey = K.random_split(rkey)
print(f"Expectation value at iteration {i}: {exp_val(param, skey)}")
# the real energy position after optimization
print(">> Adam converged as:", exp_val_analytical(param))
result["Adam (Gradient based)"].append(exp_val_analytical(param))
print("==================================================================")
print(">>> Benchmark")
print(">> Exact ground state energy: ", exact_gs_energy)
print(tabulate(result, headers="keys", tablefmt="github"))