-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathSILBuilder.cpp
847 lines (738 loc) · 33.5 KB
/
SILBuilder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
//===--- SILBuilder.cpp - Class for creating SIL Constructs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILBuilder.h"
#include "swift/AST/Expr.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILGlobalVariable.h"
using namespace swift;
extern llvm::cl::opt<bool> SILPrintDebugInfo;
//===----------------------------------------------------------------------===//
// SILBuilder Implementation
//===----------------------------------------------------------------------===//
SILBuilder::SILBuilder(SILGlobalVariable *GlobVar,
SmallVectorImpl<SILInstruction *> *InsertedInstrs)
: TempContext(GlobVar->getModule(), InsertedInstrs), C(TempContext),
F(nullptr) {
setInsertionPoint(&GlobVar->StaticInitializerBlock);
}
IntegerLiteralInst *SILBuilder::createIntegerLiteral(IntegerLiteralExpr *E) {
return insert(IntegerLiteralInst::create(E, getSILDebugLocation(E),
getModule()));
}
FloatLiteralInst *SILBuilder::createFloatLiteral(FloatLiteralExpr *E) {
return insert(FloatLiteralInst::create(E, getSILDebugLocation(E),
getModule()));
}
TupleInst *SILBuilder::createTuple(SILLocation loc, ArrayRef<SILValue> elts) {
// Derive the tuple type from the elements.
SmallVector<TupleTypeElt, 4> eltTypes;
for (auto elt : elts)
eltTypes.push_back(elt->getType().getASTType());
auto tupleType = SILType::getPrimitiveObjectType(
CanType(TupleType::get(eltTypes, getASTContext())));
return createTuple(loc, tupleType, elts);
}
SILType SILBuilder::getPartialApplyResultType(
TypeExpansionContext context, SILType origTy, unsigned argCount,
SILModule &M, SubstitutionMap subs, ParameterConvention calleeConvention,
SILFunctionTypeIsolation resultIsolation,
PartialApplyInst::OnStackKind onStack) {
CanSILFunctionType FTI = origTy.castTo<SILFunctionType>();
if (!subs.empty())
FTI = FTI->substGenericArgs(M, subs, context);
ASSERT(!FTI->isPolymorphic()
&& "must provide substitutions for generic partial_apply");
auto params = FTI->getParameters();
auto newParams = params.slice(0, params.size() - argCount);
auto extInfoBuilder =
FTI->getExtInfo()
.intoBuilder()
.withRepresentation(SILFunctionType::Representation::Thick)
.withIsolation(resultIsolation)
.withIsPseudogeneric(false);
if (onStack)
extInfoBuilder = extInfoBuilder.withNoEscape();
auto extInfo = extInfoBuilder.build();
// If the original method has an @unowned_inner_pointer return, the partial
// application thunk will lifetime-extend 'self' for us, converting the
// return value to @unowned.
//
// If the original method has an @autoreleased return, the partial application
// thunk will retain it for us, converting the return value to @owned.
SmallVector<SILResultInfo, 4> results;
results.append(FTI->getResults().begin(), FTI->getResults().end());
for (auto &result : results) {
if (result.getConvention() == ResultConvention::UnownedInnerPointer)
result = SILResultInfo(result.getReturnValueType(M, FTI, context),
ResultConvention::Unowned);
else if (result.getConvention() == ResultConvention::Autoreleased)
result = SILResultInfo(result.getReturnValueType(M, FTI, context),
ResultConvention::Owned);
}
// Do we still need the substitutions in the result?
bool needsSubstFunctionType = false;
for (auto param : newParams) {
needsSubstFunctionType |= param.getInterfaceType()->hasTypeParameter();
}
for (auto result : results) {
needsSubstFunctionType |= result.getInterfaceType()->hasTypeParameter();
}
for (auto yield : FTI->getYields()) {
needsSubstFunctionType |= yield.getInterfaceType()->hasTypeParameter();
}
if (FTI->hasErrorResult()) {
needsSubstFunctionType
|= FTI->getErrorResult().getInterfaceType()->hasTypeParameter();
}
SubstitutionMap appliedSubs;
if (needsSubstFunctionType) {
appliedSubs = FTI->getCombinedSubstitutions();
}
auto appliedFnType = SILFunctionType::get(nullptr,
extInfo,
FTI->getCoroutineKind(),
calleeConvention,
newParams,
FTI->getYields(),
results,
FTI->getOptionalErrorResult(),
appliedSubs,
SubstitutionMap(),
M.getASTContext());
return SILType::getPrimitiveObjectType(appliedFnType);
}
ProjectBoxInst *SILBuilder::createProjectBox(SILLocation Loc,
SILValue boxOperand,
unsigned index) {
auto boxTy = boxOperand->getType().castTo<SILBoxType>();
auto fieldTy = getSILBoxFieldType(getTypeExpansionContext(), boxTy,
getModule().Types, index);
return insert(new (getModule()) ProjectBoxInst(
getSILDebugLocation(Loc), boxOperand, index, fieldTy));
}
ClassifyBridgeObjectInst *
SILBuilder::createClassifyBridgeObject(SILLocation Loc, SILValue value) {
auto &ctx = getASTContext();
Type int1Ty = BuiltinIntegerType::get(1, ctx);
Type resultTy = TupleType::get({ int1Ty, int1Ty }, ctx);
auto ty = SILType::getPrimitiveObjectType(resultTy->getCanonicalType());
return insert(new (getModule())
ClassifyBridgeObjectInst(getSILDebugLocation(Loc), value, ty));
}
// Create the appropriate cast instruction based on result type.
SingleValueInstruction *
SILBuilder::createUncheckedReinterpretCast(SILLocation Loc, SILValue Op,
SILType Ty) {
ASSERT(isLoadableOrOpaque(Ty));
if (Ty.isTrivial(getFunction()))
return insert(UncheckedTrivialBitCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
if (SILType::canRefCast(Op->getType(), Ty, getModule()))
return createUncheckedRefCast(Loc, Op, Ty);
// If the source and destination types are functions with the same
// kind of representation, then do a function conversion.
if (Op->getType().isObject() && Ty.isObject()) {
if (auto OpFnTy = Op->getType().getAs<SILFunctionType>()) {
if (auto DestFnTy = Ty.getAs<SILFunctionType>()) {
if (OpFnTy->getRepresentation() == DestFnTy->getRepresentation()) {
return createConvertFunction(Loc, Op, Ty, /*withoutActuallyEscaping*/ false);
}
}
}
}
// The destination type is nontrivial, and may be smaller than the source
// type, so RC identity cannot be assumed.
return insert(UncheckedBitwiseCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
}
// Create the appropriate cast instruction based on result type.
SingleValueInstruction *
SILBuilder::createUncheckedForwardingCast(SILLocation Loc, SILValue Op,
SILType Ty) {
// Without ownership, delegate to unchecked reinterpret cast.
if (!hasOwnership())
return createUncheckedReinterpretCast(Loc, Op, Ty);
ASSERT(isLoadableOrOpaque(Ty));
if (Ty.isTrivial(getFunction()))
return insert(UncheckedTrivialBitCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
if (SILType::canRefCast(Op->getType(), Ty, getModule()))
return createUncheckedRefCast(Loc, Op, Ty);
// If the source and destination types are functions with the same
// kind of representation, then do a function conversion.
if (Op->getType().isObject() && Ty.isObject()) {
if (auto OpFnTy = Op->getType().getAs<SILFunctionType>()) {
if (auto DestFnTy = Ty.getAs<SILFunctionType>()) {
if (OpFnTy->getRepresentation() == DestFnTy->getRepresentation()) {
return createConvertFunction(Loc, Op, Ty, /*withoutActuallyEscaping*/ false);
}
}
}
}
// The destination type is nontrivial, and may be smaller than the source
// type, so RC identity cannot be assumed.
return createUncheckedValueCast(Loc, Op, Ty);
}
BranchInst *SILBuilder::createBranch(SILLocation Loc,
SILBasicBlock *TargetBlock,
OperandValueArrayRef Args) {
SmallVector<SILValue, 6> ArgsCopy;
ArgsCopy.reserve(Args.size());
for (auto I = Args.begin(), E = Args.end(); I != E; ++I)
ArgsCopy.push_back(*I);
return createBranch(Loc, TargetBlock, ArgsCopy);
}
/// Branch to the given block if there's an active insertion point,
/// then move the insertion point to the end of that block.
void SILBuilder::emitBlock(SILBasicBlock *BB, SILLocation BranchLoc) {
if (!hasValidInsertionPoint()) {
return emitBlock(BB);
}
// Fall though from the currently active block into the given block.
ASSERT(BB->args_empty() && "cannot fall through to bb with args");
// This is a fall through into BB, emit the fall through branch.
createBranch(BranchLoc, BB);
// Start inserting into that block.
setInsertionPoint(BB);
}
/// splitBlockForFallthrough - Prepare for the insertion of a terminator. If
/// the builder's insertion point is at the end of the current block (as when
/// SILGen is creating the initial code for a function), just create and
/// return a new basic block that will be later used for the continue point.
///
/// If the insertion point is valid (i.e., pointing to an existing
/// instruction) then split the block at that instruction and return the
/// continuation block.
SILBasicBlock *SILBuilder::splitBlockForFallthrough() {
// If we are concatenating, just create and return a new block.
if (insertingAtEndOfBlock()) {
return getFunction().createBasicBlockAfter(BB);
}
// Otherwise we need to split the current block at the insertion point.
auto *NewBB = BB->split(InsertPt);
InsertPt = BB->end();
return NewBB;
}
std::optional<SILDebugVariable>
SILBuilder::substituteAnonymousArgs(llvm::SmallString<4> Name,
std::optional<SILDebugVariable> Var,
SILLocation Loc) {
if (Var && shouldDropVariable(*Var, Loc))
return {};
if (!Var || !Var->ArgNo || !Var->Name.empty())
return Var;
auto *VD = Loc.getAsASTNode<VarDecl>();
if (VD && !VD->getName().empty())
return Var;
llvm::raw_svector_ostream(Name) << '_' << (Var->ArgNo - 1);
Var->Name = Name;
return Var;
}
static bool setAccessToDeinit(BeginAccessInst *beginAccess) {
// It's possible that AllocBoxToStack could catch some cases that
// AccessEnforcementSelection does not promote to [static]. Ultimately, this
// should be an assert, but only after we the two passes can be fixed to share
// a common analysis.
if (beginAccess->getEnforcement() == SILAccessEnforcement::Dynamic)
return false;
beginAccess->setAccessKind(SILAccessKind::Deinit);
return true;
}
PointerUnion<CopyAddrInst *, DestroyAddrInst *>
SILBuilder::emitDestroyAddr(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// copy_addr from the specified operand. If so, we can fold this into the
// copy_addr as a take.
BeginAccessInst *beginAccess = nullptr;
CopyAddrInst *copyAddrTake = nullptr;
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
if (!CA->isTakeOfSrc()) {
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
CA->setIsTakeOfSrc(IsTake);
return CA;
}
// If this copy_addr is accessing the same source, continue searching
// backward until we see the begin_access. If any side effects occur
// between the `%adr = begin_access %src` and `copy_addr %adr` then we
// cannot promote the access to a deinit. `[deinit]` requires exclusive
// access, but an instruction with side effects may require shared
// access.
if (CA->getSrc() == beginAccess) {
copyAddrTake = CA;
continue;
}
}
}
// If we've already seen a copy_addr that can be convert to `take`, then
// stop at the begin_access for the copy's source.
if (copyAddrTake && beginAccess == Inst) {
// If `setAccessToDeinit()` returns `true` it has modified the access
// instruction, so we are committed to the transformation on that path.
if (setAccessToDeinit(beginAccess)) {
copyAddrTake->setIsTakeOfSrc(IsTake);
return copyAddrTake;
}
}
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
// affect take-ability.
if (isa<DeallocStackInst>(Inst))
continue;
// end_borrow insts also don't affect take-ability
if (isa<EndBorrowInst>(Inst))
continue;
// An end_access of the same address may be able to be rewritten as a
// [deinit] access.
if (auto endAccess = dyn_cast<EndAccessInst>(Inst)) {
if (endAccess->getSource() == Operand) {
beginAccess = endAccess->getBeginAccess();
continue;
}
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the destroy_addr past interesting instructions.
if (Inst->mayHaveSideEffects())
break;
}
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
return createDestroyAddr(Loc, Operand);
}
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
// Simple memory accesses cannot reduce refcounts.
switch (Inst->getKind()) {
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return false;
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
/* The next case must be first in this macro because */ \
/* SOMETIMES_LOADABLE_CHECKED_REF_STORAGE will fall into it. */ \
case SILInstructionKind::Name##ReleaseInst: \
if (isLessStrongThan(ReferenceOwnership::Name, ReferenceOwnership::Strong))\
return false; \
break; \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
return false;
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, "...")
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst: \
return false;
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::LoadInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::DeallocStackInst:
return false;
default:
break;
}
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
// never can either. Nontrivial ones can though, because the overwritten
// value drops a retain. We would have to do more alias analysis to be able
// to safely ignore one of those.
if (auto AI = dyn_cast<AssignInst>(Inst)) {
auto StoredType = AI->getOperand(0)->getType();
if (StoredType.isTrivial(*Inst->getFunction()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// Initializations can only increase refcounts.
if (CAI->isInitializationOfDest())
return false;
SILType StoredType = CAI->getOperand(0)->getType().getObjectType();
if (StoredType.isTrivial(*Inst->getFunction()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the release past interesting instructions.
return Inst->mayHaveSideEffects();
}
/// Perform a strong_release instruction at the current location, attempting
/// to fold it locally into nearby retain instructions or emitting an explicit
/// strong release if necessary. If this inserts a new instruction, it
/// returns it, otherwise it returns null.
PointerUnion<StrongRetainInst *, StrongReleaseInst *>
SILBuilder::emitStrongRelease(SILLocation Loc, SILValue Operand) {
// Release on a functionref is a noop.
if (isa<FunctionRefInst>(Operand)) {
return static_cast<StrongReleaseInst *>(nullptr);
}
// Check to see if the instruction immediately before the insertion point is a
// strong_retain of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce strong refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createStrongRelease(Loc, Operand, getDefaultAtomicity());
}
/// Emit a release_value instruction at the current location, attempting to
/// fold it locally into another nearby retain_value instruction. This
/// returns the new instruction if it inserts one, otherwise it returns null.
PointerUnion<RetainValueInst *, ReleaseValueInst *>
SILBuilder::emitReleaseValue(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// retain_value of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createReleaseValue(Loc, Operand, getDefaultAtomicity());
}
PointerUnion<CopyValueInst *, DestroyValueInst *>
SILBuilder::emitDestroyValue(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// retain_value of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *CVI = dyn_cast<CopyValueInst>(Inst)) {
if (SILValue(CVI) == Operand || CVI->getOperand() == Operand)
return CVI;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createDestroyValue(Loc, Operand);
}
SILValue SILBuilder::emitThickToObjCMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is a 'metatype' instruction accessing a known static type's
// metadata, create a 'metatype' instruction that
// directly produces the Objective-C class object representation instead.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
auto origLoc = metatypeInst->getLoc();
return createMetatype(origLoc, Ty);
}
// Just create the thick_to_objc_metatype instruction.
return createThickToObjCMetatype(Loc, Op, Ty);
}
SILValue SILBuilder::emitObjCToThickMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is a 'metatype' instruction accessing a known static type's
// metadata, create a 'metatype' instruction that directly produces the
// Swift metatype representation instead.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
auto origLoc = metatypeInst->getLoc();
return createMetatype(origLoc, Ty);
}
// Just create the objc_to_thick_metatype instruction.
return createObjCToThickMetatype(Loc, Op, Ty);
}
ValueMetatypeInst *SILBuilder::createValueMetatype(SILLocation Loc,
SILType MetatypeTy,
SILValue Base) {
ASSERT(Base->getType().isLoweringOf(
getTypeExpansionContext(), getModule(),
MetatypeTy.castTo<MetatypeType>().getInstanceType()) &&
"value_metatype result must be formal metatype of the lowered operand "
"type");
return insert(new (getModule()) ValueMetatypeInst(getSILDebugLocation(Loc),
MetatypeTy, Base));
}
// TODO: This should really be an operation on type lowering.
void SILBuilder::emitDestructureValueOperation(
SILLocation loc, SILValue v, SmallVectorImpl<SILValue> &results) {
// Once destructure is allowed everywhere, remove the projection code.
// If we do not have a tuple or a struct, add to our results list and return.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
results.emplace_back(v);
return;
}
// Otherwise, we want to destructure add the destructure and return.
if (getFunction().hasOwnership()) {
auto *i = emitDestructureValueOperation(loc, v);
llvm::copy(i->getResults(), std::back_inserter(results));
return;
}
// In non qualified ownership SIL, drop back to using projection code.
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
llvm::transform(projections, std::back_inserter(results),
[&](const Projection &p) -> SILValue {
return p.createObjectProjection(*this, loc, v).get();
});
}
// TODO: Can we put this on type lowering? It would take a little bit of work
// since we would need to be able to handle aggregate trivial types which is not
// represented today in TypeLowering.
void SILBuilder::emitDestructureAddressOperation(
SILLocation loc, SILValue v, SmallVectorImpl<SILValue> &results) {
// If we do not have a tuple or a struct, add to our results list.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
results.emplace_back(v);
return;
}
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
llvm::transform(projections, std::back_inserter(results),
[&](const Projection &p) -> SILValue {
return p.createAddressProjection(*this, loc, v).get();
});
}
void SILBuilder::emitDestructureAddressOperation(
SILLocation loc, SILValue v,
function_ref<void(unsigned, SILValue)> results) {
// If we do not have a tuple or a struct, add to our results list.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
return;
}
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
for (auto pair : llvm::enumerate(projections)) {
results(pair.index(),
pair.value().createAddressProjection(*this, loc, v).get());
}
}
void SILBuilder::emitDestructureValueOperation(
SILLocation loc, SILValue operand,
function_ref<void(unsigned, SILValue)> func) {
// Do a quick check to see if we have a tuple without elements. In that
// case, bail early since we are not going to ever invoke Func.
if (auto tupleType = operand->getType().getAs<TupleType>())
if (0 == tupleType->getNumElements())
return;
SmallVector<SILValue, 8> results;
emitDestructureValueOperation(loc, operand, results);
for (auto p : llvm::enumerate(results)) {
func(p.index(), p.value());
}
}
DebugValueInst *SILBuilder::createDebugValue(SILLocation Loc, SILValue src,
SILDebugVariable Var,
PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t moved,
bool trace, bool overrideLoc) {
if (shouldDropVariable(Var, Loc))
return nullptr;
llvm::SmallString<4> Name;
SILDebugLocation DebugLoc;
if (overrideLoc) {
// Debug location overrides cannot apply to debug value instructions.
DebugLocOverrideRAII LocOverride{*this, std::nullopt};
DebugLoc = getSILDebugLocation(Loc, true);
} else {
DebugLoc = getSILDebugLocation(Loc, true);
}
return insert(DebugValueInst::create(DebugLoc, src, getModule(),
*substituteAnonymousArgs(Name, Var, Loc),
poisonRefs, moved, trace));
}
DebugValueInst *SILBuilder::createDebugValueAddr(
SILLocation Loc, SILValue src, SILDebugVariable Var,
UsesMoveableValueDebugInfo_t moved, bool trace) {
if (shouldDropVariable(Var, Loc))
return nullptr;
llvm::SmallString<4> Name;
// Debug location overrides cannot apply to debug addr instructions.
DebugLocOverrideRAII LocOverride{*this, std::nullopt};
return insert(DebugValueInst::createAddr(
getSILDebugLocation(Loc, true), src, getModule(),
*substituteAnonymousArgs(Name, Var, Loc), moved, trace));
}
void SILBuilder::emitScopedBorrowOperation(SILLocation loc, SILValue original,
function_ref<void(SILValue)> &&fun) {
SILValue value = original;
if (value->getType().isAddress()) {
value = createLoadBorrow(loc, value);
} else {
value = emitBeginBorrowOperation(loc, value);
}
fun(value);
// If we actually inserted a borrowing operation... insert the end_borrow.
if (value != original)
createEndBorrow(loc, value);
}
EndBorrowInst *SILBuilder::createEndBorrow(SILLocation loc, SILValue borrowedValue) {
ASSERT(!SILArgument::isTerminatorResult(borrowedValue) &&
"terminator results do not have end_borrow");
ASSERT(!isa<SILFunctionArgument>(borrowedValue) &&
"Function arguments should never have an end_borrow");
updateReborrowFlags(borrowedValue);
return insert(new (getModule())
EndBorrowInst(getSILDebugLocation(loc), borrowedValue));
}
SILPhiArgument *SILBuilder::createSwitchOptional(
SILLocation loc, SILValue operand,
SILBasicBlock *someBB, SILBasicBlock *noneBB,
ValueOwnershipKind forwardingOwnershipKind,
ProfileCounter someCount,
ProfileCounter noneCount) {
ProfileCounter counts[] = {someCount, noneCount};
std::optional<ArrayRef<ProfileCounter>> countsArg = std::nullopt;
if (someCount || noneCount) countsArg = counts;
auto &ctx = getASTContext();
auto sei = createSwitchEnum(loc, operand, /*default*/ nullptr,
{{ctx.getOptionalSomeDecl(), someBB},
{ctx.getOptionalNoneDecl(), noneBB}},
countsArg, /*default*/ProfileCounter(),
forwardingOwnershipKind);
return sei->createResult(someBB, operand->getType().unwrapOptionalType());
}
/// Attempt to propagate ownership from \p operand to the returned forwarding
/// ownership where the forwarded value has type \p targetType. If this fails,
/// return Owned forwarding ownership instead.
///
/// Propagation only fails when \p operand is dynamically trivial, as indicated
/// by ownership None, AND \p targetType is statically nontrivial.
///
/// Example:
///
/// %e = enum $Optional<AnyObject>, #Optional.none!enumelt
/// switch_enum %e : $Optional<AnyObject>,
/// case #Optional.some!enumelt: bb2...,
/// forwarding: @owned
/// bb2(%arg : @owned AnyObject):
///
/// Example:
///
/// %mt = metatype $@thick C.Type
/// checked_cast_br C.Type in %mt : $@thick C.Type to AnyObject.Type, bb1, bb2,
/// forwarding: @owned
/// bb1(%arg : @owned AnyObject.Type):
///
/// If the forwarded value is statically known nontrivial, then the forwarding
/// ownership cannot be None. Such a result is unreachable, but the SIL on that
/// path must still be valid. When creating ownership out of thin air, default
/// to Owned because that allows the value to be consumed without generating a
/// copy. This does require the client code to handle ending the lifetime of an
/// owned result even if the input was passed as guaranteed.
///
/// Note: For simplicity, ownership None is not propagated for any statically
/// nontrivial result, even if \p targetType may also be dynamically
/// trivial. For example, the operand of a switch_enum could be a nested enum
/// such that all switch cases may be dynamically trivial. Or a checked_cast_br
/// could cast from one dynamically trivial enum to another. Figuring out
/// whether the dynamically trivial operand value maps onto a dynamically
/// trivial terminator result would be very complex with no practical benefit.
static ValueOwnershipKind deriveForwardingOwnership(SILValue operand,
SILType targetType,
SILFunction &func) {
if (operand->getOwnershipKind() != OwnershipKind::None ||
targetType.isTrivial(func)) {
return operand->getOwnershipKind();
}
return OwnershipKind::Owned;
}
SwitchEnumInst *SILBuilder::createSwitchEnum(
SILLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount) {
// Consider the operand's type to be the target's type since a switch
// covers all cases including the default argument.
auto forwardingOwnership =
deriveForwardingOwnership(Operand, Operand->getType(), getFunction());
return createSwitchEnum(Loc, Operand, DefaultBB, CaseBBs, CaseCounts,
DefaultCount, forwardingOwnership);
}
CheckedCastBranchInst *SILBuilder::createCheckedCastBranch(
SILLocation Loc, bool isExact,
CastingIsolatedConformances isolatedConformances,
SILValue op, CanType srcFormalTy,
SILType destLoweredTy, CanType destFormalTy, SILBasicBlock *successBB,
SILBasicBlock *failureBB, ProfileCounter target1Count,
ProfileCounter target2Count) {
auto forwardingOwnership =
deriveForwardingOwnership(op, destLoweredTy, getFunction());
return createCheckedCastBranch(
Loc, isExact, isolatedConformances, op, srcFormalTy, destLoweredTy,
destFormalTy, successBB,
failureBB, forwardingOwnership, target1Count, target2Count);
}
CheckedCastBranchInst *SILBuilder::createCheckedCastBranch(
SILLocation Loc, bool isExact,
CastingIsolatedConformances isolatedConformances,
SILValue op, CanType srcFormalTy,
SILType destLoweredTy, CanType destFormalTy, SILBasicBlock *successBB,
SILBasicBlock *failureBB, ValueOwnershipKind forwardingOwnershipKind,
ProfileCounter target1Count, ProfileCounter target2Count) {
ASSERT((!hasOwnership() || !failureBB->getNumArguments() ||
failureBB->getArgument(0)->getType() == op->getType()) &&
"failureBB's argument doesn't match incoming argument type");
return insertTerminator(CheckedCastBranchInst::create(
getSILDebugLocation(Loc), isExact, isolatedConformances, op, srcFormalTy,
destLoweredTy, destFormalTy, successBB, failureBB, getFunction(),
target1Count, target2Count, forwardingOwnershipKind));
}
BuiltinInst *SILBuilder::createZeroInitAddr(SILLocation loc, SILValue addr) {
assert(addr->getType().isAddress());
auto &C = getASTContext();
auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
return createBuiltin(loc, zeroInit->getBaseIdentifier(),
SILType::getEmptyTupleType(C),
SubstitutionMap(),
addr);
}
SILValue SILBuilder::createZeroInitValue(SILLocation loc, SILType loweredTy) {
assert(loweredTy.isObject());
auto &C = getASTContext();
auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
return createBuiltin(loc, zeroInit->getBaseIdentifier(),
loweredTy,
SubstitutionMap(),
{});
}
void SILBuilderWithScope::insertAfter(SILInstruction *inst,
function_ref<void(SILBuilder &)> func) {
if (isa<TermInst>(inst)) {
for (const SILSuccessor &succ : inst->getParent()->getSuccessors()) {
SILBasicBlock *succBlock = succ;
ASSERT(succBlock->getSinglePredecessorBlock() == inst->getParent() &&
"the terminator instruction must not have critical successors");
SILBuilderWithScope builder(succBlock->begin());
func(builder);
}
} else {
SILBuilderWithScope builder(std::next(inst->getIterator()));
func(builder);
}
}