-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathAliasAnalysis.swift
953 lines (859 loc) · 36.3 KB
/
AliasAnalysis.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//===--- AliasAnalysis.swift - the alias analysis -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import OptimizerBridging
import SIL
extension FunctionPassContext {
var aliasAnalysis: AliasAnalysis {
let bridgedAA = _bridged.getAliasAnalysis()
return AliasAnalysis(bridged: bridgedAA, context: self)
}
}
extension Instruction {
func mayRead(fromAddress: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
aliasAnalysis.getMemoryEffect(of: self, on: fromAddress).read
}
func mayWrite(toAddress: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
if toAddress.isImmutableAddress {
// Take a shortcut for indirect-in arguments.
return false
}
return aliasAnalysis.getMemoryEffect(of: self, on: toAddress).write
}
func mayReadOrWrite(address: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
let effect = aliasAnalysis.getMemoryEffect(of: self, on: address)
if address.isImmutableAddress {
return effect.read
}
return effect.read || effect.write
}
}
/// Alias analysis.
///
/// It's mainly used to check if an instruction may read or write from/to a specific address.
///
struct AliasAnalysis {
fileprivate let bridged: BridgedAliasAnalysis
fileprivate let context: FunctionPassContext
//===--------------------------------------------------------------------===//
// Public interface
//===--------------------------------------------------------------------===//
/// Returns the effects of `inst`'s memory behavior on the memory pointed to by the `address`.
func getMemoryEffect(of inst: Instruction, on address: Value) -> SideEffects.Memory {
precondition(address.type.isAddress, "getMemoryEffects requires address value")
var result = computeMemoryEffect(of: inst, on: MemoryLocation.memoryAddress(address))
if result.write && isImmutable(instruction: inst, inScopeOf: address) {
result.write = false
}
// In the past we cached the result per instruction-address pair. But it turned out that the hit-miss rate was
// pretty high (~ 1:7) and the cache lookup took as long as recomputing.
return result
}
/// Returns true if `v1` and `v2` do or may alias.
///
/// Usually `v1` and `v2` are addresses and in this case the return value is true if both addresses
/// do or may point to the same memory location.
///
/// If `v1` or `v2` is not an address, the function checks if any "interior" pointer of the value may alias
/// with the other value or address.
/// If a value is a class, "interior" pointer means: an address of any stored property of the class instance.
/// If a value is a struct or another value type, "interior" pointers refer to any stored propery addresses of any
/// class references in the struct or value type. For example:
///
/// class C { var x: Int; var y: Int }
/// struct S { var c1: C; var c2: C }
///
/// `mayAlias(s, someAddress)` checks if someAddress aliases with `s.c1.x`, `s.c1.y`, `s.c2.x` or `s.c2.y`
///
func mayAlias(_ v1: Value, _ v2: Value) -> Bool {
if v1.type.isAddress && v2.type.isAddress {
// The projection-path based check and TBAA can only be done if both values are really addresses.
// This is the common case.
let accessPath1 = v1.accessPath
let accessPath2 = v2.accessPath
if accessPath1.isDistinct(from: accessPath2) {
return false
}
// Type-based alias analysis is only of minor importance. It's only needed if unsafe pointers are in play.
// There are some critical functions in the stdlib which use unsafe pointers. Therefore we cannot omit TBAA.
if isTypeDistinct(v1, v2, accessPath1.base, accessPath2.base) {
return false
}
}
// Finaly use escape info to check if one address "escapes" to the other address.
return v1.allContainedAddresss.canAddressAlias(with: v2.allContainedAddresss, context)
}
static func register() {
BridgedAliasAnalysis.registerAnalysis(
// initFn
{ (bridgedAliasAnalysis: BridgedAliasAnalysis, size: Int) in
assert(MemoryLayout<Cache>.size <= size, "wrong AliasAnalysis.cache size")
bridgedAliasAnalysis.mutableCachePointer.initializeMemory(as: Cache.self, repeating: Cache(), count: 1)
},
// destroyFn
{ (bridgedAliasAnalysis: BridgedAliasAnalysis) in
bridgedAliasAnalysis.mutableCachePointer.assumingMemoryBound(to: Cache.self).deinitialize(count: 1)
},
// getMemEffectsFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedAddr: BridgedValue,
bridgedInst: BridgedInstruction) -> BridgedMemoryBehavior in
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: FunctionPassContext(_bridged: bridgedCtxt))
return aa.getMemoryEffect(of: bridgedInst.instruction, on: bridgedAddr.value).bridged
},
// isObjReleasedFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedObj: BridgedValue,
bridgedInst: BridgedInstruction) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
let inst = bridgedInst.instruction
let obj = bridgedObj.value
let path = SmallProjectionPath(.anyValueFields)
let budget = aa.getComplexityBudget(for: inst.parentFunction)
if let apply = inst as? FullApplySite {
// Workaround for quadratic complexity in ARCSequenceOpts.
// We need to use an ever lower budget to not get into noticeable compile time troubles.
let effect = aa.getOwnershipEffect(of: apply, for: obj, path: path, complexityBudget: budget / 10)
return effect.destroy
}
return obj.at(path).isEscaping(using: EscapesToInstructionVisitor(target: inst, isAddress: false),
complexityBudget: budget, context)
},
// isAddrVisibleFromObj
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedAddr: BridgedValue,
bridgedObj: BridgedValue) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
let addr = bridgedAddr.value.allContainedAddresss
// This is similar to `canReferenceSameFieldFn`, except that all addresses of all objects are
// considered which are transitively visible from `bridgedObj`.
let anythingReachableFromObj = bridgedObj.value.at(SmallProjectionPath(.anything))
return addr.canAddressAlias(with: anythingReachableFromObj,
complexityBudget: aa.getComplexityBudget(for: bridgedObj.value.parentFunction),
context)
},
// mayAliasFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedLhs: BridgedValue,
bridgedRhs: BridgedValue) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
return aa.mayAlias(bridgedLhs.value, bridgedRhs.value)
}
)
}
//===--------------------------------------------------------------------===//
// Internals
//===--------------------------------------------------------------------===//
private var cache: Cache {
unsafeAddress {
bridged.cachePointer.assumingMemoryBound(to: Cache.self)
}
nonmutating unsafeMutableAddress {
bridged.mutableCachePointer.assumingMemoryBound(to: Cache.self)
}
}
// The actual logic to compute the memory effect of an instruction.
private func computeMemoryEffect(of inst: Instruction, on memLoc: MemoryLocation) -> SideEffects.Memory {
switch inst {
case let beginAccess as BeginAccessInst:
// begin_access does not physically read or write memory. But we model it as a memory read and/or write
// to prevent optimizations to move other aliased loads/stores across begin_access into the access scope.
return getAccessScopeEffect(of: beginAccess, on: memLoc)
case let endAccess as EndAccessInst:
// Similar to begin_access, we model it as a memory read and/or write to prevent optimizations to move
// other aliased loads/stores into the access scope.
return getAccessScopeEffect(of: endAccess.beginAccess, on: memLoc)
case is InjectEnumAddrInst,
is UncheckedTakeEnumDataAddrInst,
is InitExistentialAddrInst,
is DeinitExistentialAddrInst,
is FixLifetimeInst,
is ClassifyBridgeObjectInst,
is ValueToBridgeObjectInst,
is DeallocStackInst:
if memLoc.mayAlias(with: (inst as! UnaryInstruction).operand.value, self) {
return inst.memoryEffects
}
return .noEffects
case is CondFailInst,
is StrongRetainInst,
is UnownedRetainInst,
is StrongRetainUnownedInst,
is RetainValueInst,
is UnmanagedRetainValueInst,
is CopyValueInst,
is StrongCopyUnownedValueInst,
is StrongCopyUnmanagedValueInst,
is StrongCopyWeakValueInst,
is BeginBorrowInst,
is BeginCOWMutationInst:
return .noEffects
case let load as LoadInst:
if memLoc.mayAlias(with: load.address, self) {
switch load.loadOwnership {
case .unqualified, .copy, .trivial:
return .init(read: true)
case .take:
// "take" is conceptually a write to the memory location.
return .worstEffects
}
} else {
return .noEffects
}
case let store as StoreInst:
if memLoc.isLetValue && store.destination.accessBase != memLoc.address.accessBase {
return .noEffects
}
if memLoc.mayAlias(with: store.destination, self) {
return inst.memoryEffects
} else {
switch store.storeOwnership {
case .unqualified, .initialize, .trivial:
return .noEffects
case .assign:
// Consider side effects of the destructor
return defaultEffects(of: store, on: memLoc)
}
}
case let storeBorrow as StoreBorrowInst:
return memLoc.mayAlias(with: storeBorrow.destination, self) ? .init(write: true) : .noEffects
case let mdi as MarkDependenceInstruction:
if mdi.base.type.isAddress && memLoc.mayAlias(with: mdi.base, self) {
return .init(read: true)
}
return .noEffects
case let copy as SourceDestAddrInstruction:
let mayRead = memLoc.mayAlias(with: copy.source, self)
let mayWrite = memLoc.mayAlias(with: copy.destination, self)
var effects = SideEffects.Memory(read: mayRead, write: mayWrite || (mayRead && copy.isTakeOfSrc))
if !copy.isInitializationOfDest {
effects.merge(with: defaultEffects(of: copy, on: memLoc))
}
return effects
case let apply as FullApplySite:
return getApplyEffect(of: apply, on: memLoc)
case let partialApply as PartialApplyInst:
return getPartialApplyEffect(of: partialApply, on: memLoc)
case let endApply as EndApplyInst:
let beginApply = endApply.beginApply
if case .yield(let addr) = memLoc.address.accessBase, addr.parentInstruction == beginApply {
// The lifetime of yielded values always end at the end_apply. This is required because a yielded
// address is non-aliasing inside the begin/end_apply scope, but might be aliasing after the end_apply.
// For example, if the callee yields an `ref_element_addr` (which is encapsulated in a begin/end_access).
// Therefore, even if the callee does not write anything, the effects must be "read" and "write".
return .worstEffects
}
return getApplyEffect(of: beginApply, on: memLoc)
case let abortApply as AbortApplyInst:
let beginApply = abortApply.beginApply
if case .yield(let addr) = memLoc.address.accessBase, addr.parentInstruction == beginApply {
// See the comment for `end_apply` above.
return .worstEffects
}
return getApplyEffect(of: beginApply, on: memLoc)
case let builtin as BuiltinInst:
return getBuiltinEffect(of: builtin, on: memLoc)
case let endBorrow as EndBorrowInst:
switch endBorrow.borrow {
case let storeBorrow as StoreBorrowInst:
precondition(endBorrow.borrow.type.isAddress)
return memLoc.mayAlias(with: storeBorrow, self) ? .worstEffects : .noEffects
case let beginBorrow as BeginBorrowInst where !beginBorrow.hasPointerEscape:
return getBorrowEffects(of: endBorrow, on: memLoc)
case let loadBorrow as LoadBorrowInst:
let borrowEffects = getBorrowEffects(of: endBorrow, on: memLoc)
// In addition to the "regular" borrow effects, a load_borrow also has effects on the memory location
// from where it loads the value. This includes "write" to prevent any optimization to change the
// memory location after the load_borrow.
if borrowEffects != .worstEffects && memLoc.mayAlias(with: loadBorrow.address, self) {
return .worstEffects
}
return borrowEffects
default:
break
}
return defaultEffects(of: endBorrow, on: memLoc)
case let debugValue as DebugValueInst:
if debugValue.operand.value.type.isAddress && memLoc.mayAlias(with: debugValue.operand.value, self) {
return .init(read: true)
} else {
return .noEffects
}
case let destroy as DestroyValueInst:
if destroy.destroyedValue.type.isNoEscapeFunction {
return .noEffects
}
if destroy.isDeadEnd {
// We don't have to take deinit effects into acount for a `destroy_value [dead_end]`.
// Such destroys are lowered to no-ops and will not call any deinit.
return .noEffects
}
return defaultEffects(of: destroy, on: memLoc)
default:
let effects = inst.memoryEffects
if effects == .noEffects {
return effects
}
return defaultEffects(of: inst, on: memLoc)
}
}
/// Returns the memory effects which protect the interior pointers of a borrowed value.
/// For example, an `end_borrow` of a class reference must alias with all field addresses (= the interior
/// pointers) of the class instance.
private func getBorrowEffects(of endBorrow: EndBorrowInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
let accessPath = memLoc.address.accessPath
switch accessPath.base {
case .stack, .global, .argument, .storeBorrow:
// Those access bases cannot be interior pointers of a borrowed value
return .noEffects
case .pointer, .index, .unidentified, .yield:
// We don't know anything about this address -> get the conservative effects
return defaultEffects(of: endBorrow, on: memLoc)
case .box, .class, .tail:
// Check if the memLoc is "derived" from the begin_borrow, i.e. is an interior pointer.
var walker = FindBeginBorrowWalker(beginBorrow: endBorrow.borrow as! BorrowIntroducingInstruction)
return walker.visitAccessStorageRoots(of: accessPath) ? .noEffects : .worstEffects
}
}
private func getAccessScopeEffect(of beginAccess: BeginAccessInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
if !memLoc.mayAlias(with: beginAccess.address, self) {
return .noEffects
}
switch beginAccess.accessKind {
case .`init`:
return .init(read: false, write: true)
case .read:
return .init(read: true, write: false)
case .modify:
return memLoc.isLetValue ? .noEffects : .worstEffects
case .deinit:
// For the same reason we treat a `load [take]` or a `destroy_addr`
// as a memory write, we do that for a `begin_access [deinit]` as well.
return .worstEffects
}
}
private func getApplyEffect(of apply: FullApplySite, on memLoc: MemoryLocation) -> SideEffects.Memory {
let calleeAnalysis = context.calleeAnalysis
let visitor = FullApplyEffectsVisitor(apply: apply, calleeAnalysis: calleeAnalysis, isAddress: true)
let memoryEffects: SideEffects.Memory
// First try to figure out to which argument(s) the address "escapes" to.
if let result = memLoc.addressWithPath.visit(using: visitor,
initialWalkingDirection: memLoc.walkingDirection,
context)
{
// The resulting effects are the argument effects to which `address` escapes to.
memoryEffects = result.memory
} else {
// The address has unknown escapes. So we have to take the global effects of the called function(s).
memoryEffects = calleeAnalysis.getSideEffects(ofApply: apply).memory
}
return memoryEffects
}
private func getPartialApplyEffect(of partialApply: PartialApplyInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
let visitor = PartialApplyEffectsVisitor(partialApply: partialApply)
// Figure out to which argument(s) the address "escapes" to.
if let result = memLoc.addressWithPath.visit(using: visitor,
initialWalkingDirection: memLoc.walkingDirection,
context)
{
// The resulting effects are the argument effects to which the address escapes to.
return result
}
return .worstEffects
}
private func getBuiltinEffect(of builtin: BuiltinInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
switch builtin.id {
case .Once, .OnceWithContext:
if !memLoc.addressWithPath.isEscaping(using: AddressVisibleByBuiltinOnceVisitor(),
initialWalkingDirection: memLoc.walkingDirection,
context)
{
return .noEffects
}
let callee = builtin.operands[1].value
return context.calleeAnalysis.getSideEffects(ofCallee: callee).memory
default:
return defaultEffects(of: builtin, on: memLoc)
}
}
private func getOwnershipEffect(of apply: FullApplySite, for value: Value,
path: SmallProjectionPath,
complexityBudget: Int) -> SideEffects.Ownership {
let visitor = FullApplyEffectsVisitor(apply: apply, calleeAnalysis: context.calleeAnalysis, isAddress: false)
if let result = value.at(path).visit(using: visitor, complexityBudget: complexityBudget, context) {
// The resulting effects are the argument effects to which `value` escapes to.
return result.ownership
} else {
// `value` has unknown escapes. So we have to take the global effects of the called function(s).
return visitor.calleeAnalysis.getSideEffects(ofApply: apply).ownership
}
}
/// Gets the default effects of an instruction.
/// It just checks if `memLoc` can somehow be visible by `inst` at all.
private func defaultEffects(of inst: Instruction, on memLoc: MemoryLocation) -> SideEffects.Memory {
if memLoc.addressWithPath.isEscaping(using: EscapesToInstructionVisitor(target: inst, isAddress: true),
initialWalkingDirection: memLoc.walkingDirection,
complexityBudget: getComplexityBudget(for: inst.parentFunction), context)
{
return inst.memoryEffects
}
return .noEffects
}
// To avoid quadratic complexity for large functions, we limit the amount of work that the EscapeUtils are
// allowed to to. This keeps the complexity linear.
//
// This arbitrary limit is good enough for almost all functions. It lets
// the EscapeUtils do several hundred up/down walks which is much more than needed in most cases.
private func getComplexityBudget(for function: Function) -> Int {
if cache.estimatedFunctionSize == nil {
var numInsts = 0
for _ in function.instructions { numInsts += 1 }
cache.estimatedFunctionSize = numInsts
}
return 1000000 / cache.estimatedFunctionSize!
}
/// Returns true if the `instruction` (which in general writes to memory) is immutable in a certain scope,
/// defined by `address`.
///
/// That means that even if we don't know anything about `instruction`, we can be sure
/// that `instruction` cannot write to `address`, if it's inside the addresse's scope.
/// An immutable scope is for example a read-only `begin_access`/`end_access` scope.
/// Another example is a borrow scope of an immutable copy-on-write buffer.
private func isImmutable(instruction: Instruction, inScopeOf address: Value) -> Bool {
guard let immutableScope = ImmutableScope(for: address, context) else {
return false
}
if case .wholeFunction = immutableScope {
// No need to check if the instruction is inside the scope if the scope is the whole function.
return true
}
if !isImmutableCacheComputed(for: immutableScope) {
computeImmutableCache(for: immutableScope)
}
let key = Cache.ScopeKey(beginScope: immutableScope.beginScopeInstruction, instInScope: instruction)
return cache.immutableInstructionsInScopes.contains(key)
}
private func isImmutableCacheComputed(for immutableScope: ImmutableScope) -> Bool {
let beginScopeInst = immutableScope.beginScopeInstruction
// The special key of (beginScopeInst, beginScopeInst) is used as a marker to check if the immutable scope
// is already computed at all.
let key = Cache.ScopeKey(beginScope: beginScopeInst, instInScope: beginScopeInst)
return !cache.immutableInstructionsInScopes.insert(key).inserted
}
private func computeImmutableCache(for immutableScope: ImmutableScope) {
let beginScopeInst = immutableScope.beginScopeInstruction
var worklist = InstructionWorklist(context)
defer { worklist.deinitialize() }
immutableScope.pushEndScopeInstructions(to: &worklist)
while let inst = worklist.pop() {
if inst.mayWriteToMemory {
if case .modifyAccess(let beginAccessInst) = immutableScope,
computeMemoryEffect(of: inst, on: .modifyAccessScope(beginAccessInst)).write
{
} else {
cache.immutableInstructionsInScopes.insert(Cache.ScopeKey(beginScope: beginScopeInst, instInScope: inst))
}
}
worklist.pushPredecessors(of: inst, ignoring: beginScopeInst)
}
}
}
//===--------------------------------------------------------------------===//
// Internal data structures
//===--------------------------------------------------------------------===//
private struct Cache {
struct ScopeKey: Hashable {
let beginScope: Instruction
let instInScope: Instruction
}
// Caches immutable instructions inside specific scopes.
var immutableInstructionsInScopes = Set<ScopeKey>()
// Used to limit complexity. The size is computed lazily.
var estimatedFunctionSize: Int? = nil
}
// A simple abstraction for the kind of address the memory effect is computed.
private enum MemoryLocation {
// The usual case: an arbitrary address
case memoryAddress(Value)
// The address of an modify-access, within the access scope.
// The difference to an arbitrary address is that we know that there are no other reads or writes to the
// access-address within the access scope.
// This is used when computing the immutable-scope of a `begin_access [modify]`
case modifyAccessScope(BeginAccessInst)
var addressWithPath: ProjectedValue {
let addrValue = self.address
return addrValue.at(SmallProjectionPath(.anyValueFields))
}
var address: Value {
switch self {
case .memoryAddress(let value):
precondition(value.type.isAddress, "expected address value")
return value
case .modifyAccessScope(let beginAccess):
return beginAccess
}
}
var walkingDirection: EscapeUtilityTypes.WalkingDirection {
switch self {
case .memoryAddress:
// We need to consider where the address comes from
return .up
case .modifyAccessScope:
// We don't care where the access-address comes from because we know that all accesses to the address
// (in the access scope) must be derived from the `begin_access`.
return .down
}
}
var isLetValue: Bool {
switch self {
case .memoryAddress(let addr):
return addr.accessBase.isLet
case .modifyAccessScope:
return false
}
}
func mayAlias(with otherAddr: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
return aliasAnalysis.mayAlias(address, otherAddr)
}
}
/// A scope in which certain instructions can be assumed to be immutable,
/// i.e. don't write to the scope's based address.
private enum ImmutableScope {
// If the based address is or is derived from an indirect-in or guaranteed function argument.
// The scope spans over the whole function and we don't need to do any scope computation.
case wholeFunction
// If the based address is or is derived from a begin_access with access kind "read".
case readAccess(BeginAccessInst)
// If the based address is or is derived from a begin_access with access kind "modify".
case modifyAccess(BeginAccessInst)
// If the based address is an interior pointer (e.g. the address of a class field) of a borrowed object.
case borrow(BeginBorrowValue)
init?(for basedAddress: Value, _ context: FunctionPassContext) {
switch basedAddress.enclosingAccessScope {
case .access(let beginAccess):
if beginAccess.isUnsafe {
return nil
}
switch beginAccess.accessKind {
case .read:
self = .readAccess(beginAccess)
case .modify:
self = .modifyAccess(beginAccess)
case .`init`, .deinit:
return nil
}
case .base(let accessBase):
let object: Value
switch accessBase {
case .class(let elementAddr):
if !elementAddr.isImmutable {
return nil
}
object = elementAddr.instance
case .tail(let tailAddr):
if !tailAddr.isImmutable {
return nil
}
object = tailAddr.instance
case .global(let global):
if global.isLet && !basedAddress.parentFunction.canInitializeGlobal {
self = .wholeFunction
return
}
return nil
default:
return nil
}
if !object.parentFunction.hasOwnership {
// Special handling for non-OSSA: we can only reason about guaranteed function arguments.
var walker = IsGuaranteedFunctionArgumentWalker()
if walker.walkUp(value: object, path: SmallProjectionPath()) != .continueWalk {
return nil
}
self = .wholeFunction
} else {
guard let singleBorrowIntroducer = object.getBorrowIntroducers(context).singleElement else {
return nil
}
switch singleBorrowIntroducer {
case .beginBorrow, .loadBorrow, .reborrow:
self = .borrow(singleBorrowIntroducer)
case .functionArgument:
self = .wholeFunction
case .beginApply, .uncheckOwnershipConversion:
return nil
}
}
case .dependence(let markDep):
// ignore mark_dependence for the purpose of alias analysis.
self.init(for: markDep.value, context)
}
}
var beginScopeInstruction: SingleValueInstruction {
switch self {
case .wholeFunction:
fatalError("should not request the beginScopeInstruction of a whole function")
case .readAccess(let beginAccess), .modifyAccess(let beginAccess):
return beginAccess
case .borrow(let beginBorrowValue):
switch beginBorrowValue {
case .beginBorrow(let bbi): return bbi
case .loadBorrow(let lbi): return lbi
case .reborrow(let phi): return phi.borrowedFrom!
default: fatalError("unsupported BeginBorrowValue")
}
}
}
func pushEndScopeInstructions(to worklist: inout InstructionWorklist) {
switch self {
case .wholeFunction:
fatalError("should not pushEndScopeInstructions of a whole function")
case .readAccess(let beginAccess), .modifyAccess(let beginAccess):
for endAccess in beginAccess.endAccessInstructions {
worklist.pushPredecessors(of: endAccess, ignoring: beginAccess)
}
case .borrow(let beginBorrowValue):
let beginScopeInst = beginScopeInstruction
for endBorrowOp in beginBorrowValue.scopeEndingOperands {
worklist.pushPredecessors(of: endBorrowOp.instruction, ignoring: beginScopeInst)
}
}
}
}
private struct FindBeginBorrowWalker : ValueUseDefWalker {
let beginBorrow: BorrowIntroducingInstruction
var walkUpCache = WalkerCache<Path>()
mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
if value == beginBorrow {
return .abortWalk
}
if value.ownership != .guaranteed {
// If value is owned then it cannot be the borrowed value.
return .continueWalk
}
return walkUpDefault(value: value, path: path)
}
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
switch value {
case is FunctionArgument,
// Loading a value from memory cannot be the borrowed value.
// Note that we exclude the "regular" `load` by checking for guaranteed ownership in `walkUp`.
is LoadBorrowInst:
return .continueWalk
default:
return .abortWalk
}
}
}
private struct IsGuaranteedFunctionArgumentWalker : ValueUseDefWalker {
var walkUpCache = WalkerCache<Path>()
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
if let funcArg = value as? FunctionArgument, funcArg.convention.isGuaranteed {
return .continueWalk
}
return .abortWalk
}
}
// Computes the effects which a called function (potentially) has on an address.
private struct FullApplyEffectsVisitor : EscapeVisitorWithResult {
let apply: FullApplySite
let calleeAnalysis: CalleeAnalysis
let isAddress: Bool
var result = SideEffects.GlobalEffects()
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
if user == apply {
if apply.isCallee(operand: operand) {
// If the address "escapes" to the callee of the apply it means that the address was captured
// by an inout_aliasable operand of an partial_apply.
// Therefore assume that the called function will both, read and write, to the address.
return .abort
}
let e = calleeAnalysis.getSideEffects(of: apply, operand: operand, path: path.projectionPath)
result.merge(with: e)
}
return .continueWalk
}
var followTrivialTypes: Bool { isAddress }
var followLoads: Bool { !isAddress }
}
// In contrast to a full apply, the effects of a partial_apply don't depend on the callee
// (a partial_apply doesn't call anything, it just creates a thick function pointer).
// The only effects come from capturing the arguments (either consuming or guaranteeed).
private struct PartialApplyEffectsVisitor : EscapeVisitorWithResult {
let partialApply: PartialApplyInst
var result = SideEffects.Memory.noEffects
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
if user == partialApply,
let convention = partialApply.convention(of: operand)
{
switch convention {
case .indirectIn, .indirectInGuaranteed:
result.read = true
if !partialApply.isOnStack {
result.write = true
}
case .indirectInout, .indirectInoutAliasable, .packInout:
break
case .directOwned, .directUnowned, .directGuaranteed, .packOwned, .packGuaranteed:
break
case .indirectOut, .packOut, .indirectInCXX:
fatalError("invalid convention for partial_apply")
}
}
return .continueWalk
}
var followTrivialTypes: Bool { true }
var followLoads: Bool { false }
}
private struct AddressVisibleByBuiltinOnceVisitor : EscapeVisitor {
var followTrivialTypes: Bool { true }
var followLoads: Bool { false }
}
/// Checks if a value is "escaping" to the `target` instruction.
private struct EscapesToInstructionVisitor : EscapeVisitor {
let target: Instruction
let isAddress: Bool
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user == target {
return .abort
}
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
return .continueWalk
}
var followTrivialTypes: Bool { isAddress }
var followLoads: Bool { !isAddress }
}
private extension Value {
var isImmutableAddress: Bool {
switch accessBase {
case .argument(let arg):
return arg.convention == .indirectInGuaranteed
default:
return false
}
}
}
//===--------------------------------------------------------------------===//
// Type-based alias analysis (TBAA)
//===--------------------------------------------------------------------===//
/// Perform type-based alias analysis (TBAA).
private func isTypeDistinct(_ address1: Value, _ address2: Value,
_ accessBase1: AccessBase, _ accessBase2: AccessBase
) -> Bool {
let type1 = address1.type
let type2 = address2.type
if type1 == type2 {
return false
}
if !accessBase1.isEligibleForTBAA || !accessBase2.isEligibleForTBAA {
return false
}
if !type1.isEligibleForTBAA || !type2.isEligibleForTBAA {
return false
}
let function = address1.parentFunction
// Even if the types are different, one type can contain the other type, e.g.
//
// struct S { var i: Int }
// isTypeDistinct(addressOfS, addressOfInt) -> false
//
if type1.aggregateIsOrContains(type2, in: function) || type2.aggregateIsOrContains(type1, in: function) {
return false
}
if type1.isClass && type2.isClass {
return false
}
return true
}
private extension AccessBase {
func isIndirectResult(of apply: FullApplySite) -> Bool {
return apply.indirectResultOperands.contains { $0.value.accessBase == self }
}
var isEligibleForTBAA: Bool {
// Only access bases which cannot be the result of an not-strict pointer conversion are eligible.
switch self {
case .box, .class, .tail, .global:
return true
case .pointer(let pointerToAddress):
return pointerToAddress.isStrict
default:
return false
}
}
}
private extension Type {
var isEligibleForTBAA: Bool {
if hasArchetype {
// Two distinct types which contain archetypes can be actually the same, e.g.:
// SomeGenericStruct<T> // T is a type parameter, which can potentially also be Int
// SomeGenericStruct<Int>
return false
}
if isClass || isStruct || isEnum || isTuple {
return true
}
// Only support the most important builtin types to be on the safe side.
// Historically we assumed that Builtin.RawPointer can alias everything (but why?).
if isBuiltinInteger || isBuiltinFloat {
return true
}
return false
}
}
private extension Function {
var canInitializeGlobal: Bool {
return isGlobalInitOnceFunction ||
// In non -parse-as-library mode globals are initialized in the `main` function.
name == "main"
}
}
//===--------------------------------------------------------------------===//
// Bridging
//===--------------------------------------------------------------------===//
private extension SideEffects.Memory {
var bridged: BridgedMemoryBehavior {
switch (read, write) {
case (false, false): return .None
case (true, false): return .MayRead
case (false, true): return .MayWrite
case (true, true): return .MayReadWrite
}
}
}
private extension BridgedAliasAnalysis {
var cachePointer: UnsafeRawPointer {
UnsafeRawPointer(aa)
}
var mutableCachePointer: UnsafeMutableRawPointer {
UnsafeMutableRawPointer(aa)
}
}