-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeCheckExpr.cpp
839 lines (730 loc) · 30.2 KB
/
TypeCheckExpr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//===--- TypeCheckExpr.cpp - Type Checking for Expressions ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions, analyzing an
// expression tree in post-order, bottom-up, from leaves up to the root.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/OperatorNameLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Assertions.h"
#include "swift/Parse/Lexer.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Expression Semantic Analysis Routines
//===----------------------------------------------------------------------===//
static Type getArgListUniqueSugarType(ArgumentList *args, CanType resultTy) {
Type uniqueSugarTy;
for (auto arg : *args) {
auto argTy = arg.getExpr()->getType();
if (!argTy)
return Type();
if (argTy->getCanonicalType() != resultTy) {
// If the argument is a metatype of what we're looking for, propagate
// that.
if (auto MTT = argTy->getAs<MetatypeType>())
argTy = MTT->getInstanceType();
if (argTy->getCanonicalType() != resultTy)
return Type();
}
// If this is the first match against the sugar type we found, use it.
if (!uniqueSugarTy) {
uniqueSugarTy = argTy;
continue;
}
// Make sure this argument's sugar is consistent with the sugar we
// already found.
if (argTy.getPointer() != uniqueSugarTy.getPointer())
return Type();
}
return uniqueSugarTy;
}
/// If we can propagate type sugar from input arguments types to the result of
/// an apply, do so.
Expr *TypeChecker::substituteInputSugarTypeForResult(ApplyExpr *E) {
if (!E->getType() || E->getType()->hasError())
return E;
/// Check to see if you have "x+y" (where x and y are type aliases) that match
// the canonical result type. If so, propagate the sugar.
auto resultTy = E->getType();
auto resultSugarTy = getArgListUniqueSugarType(E->getArgs(),
resultTy->getCanonicalType());
if (resultSugarTy && resultTy->isCanonical()) {
E->setType(resultSugarTy);
return E;
}
// Otherwise check to see if this is a ConstructorRefExpr on a TypeExpr with
// sugar on it. If so, propagate the sugar to the curried result function
// type.
if (auto *CRCE = dyn_cast<ConstructorRefCallExpr>(E)) {
if (auto *TE = dyn_cast<TypeExpr>(CRCE->getBase())) {
auto resultSugar = TE->getInstanceType();
// The result of this apply is "(args) -> T" where T is the type being
// constructed. Apply the sugar onto it.
if (auto FT = E->getType()->getAs<FunctionType>())
if (FT->getResult()->isEqual(resultSugar) && !resultSugar->isCanonical()){
auto NFT = FunctionType::get(FT->getParams(), resultSugar,
FT->getExtInfo());
E->setType(NFT);
return E;
}
}
}
return E;
}
static PrecedenceGroupDecl *lookupPrecedenceGroupForOperator(DeclContext *DC,
Identifier name,
SourceLoc loc) {
auto result = DC->lookupInfixOperator(name);
auto *op =
loc.isValid() ? result.getSingleOrDiagnose(loc) : result.getSingle();
return op ? op->getPrecedenceGroup() : nullptr;
}
PrecedenceGroupDecl *
TypeChecker::lookupPrecedenceGroupForInfixOperator(DeclContext *DC, Expr *E,
bool diagnose) {
/// Look up the builtin precedence group with the given name.
auto getBuiltinPrecedenceGroup = [&](DeclContext *DC, Identifier name,
SourceLoc loc) -> PrecedenceGroupDecl * {
auto groups = TypeChecker::lookupPrecedenceGroup(DC, name, loc);
return loc.isValid() ? groups.getSingleOrDiagnose(loc, /*forBuiltin*/ true)
: groups.getSingle();
};
auto &Context = DC->getASTContext();
if (auto *ternary = dyn_cast<TernaryExpr>(E)) {
// Ternary has fixed precedence.
return getBuiltinPrecedenceGroup(DC, Context.Id_TernaryPrecedence,
diagnose ? ternary->getQuestionLoc()
: SourceLoc());
}
if (auto assignExpr = dyn_cast<AssignExpr>(E)) {
// Assignment has fixed precedence.
return getBuiltinPrecedenceGroup(DC, Context.Id_AssignmentPrecedence,
diagnose ? assignExpr->getEqualLoc()
: SourceLoc());
}
if (auto castExpr = dyn_cast<ExplicitCastExpr>(E)) {
// 'as' and 'is' casts have fixed precedence.
return getBuiltinPrecedenceGroup(DC, Context.Id_CastingPrecedence,
diagnose ? castExpr->getAsLoc()
: SourceLoc());
}
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
Identifier name = DRE->getDecl()->getBaseIdentifier();
return lookupPrecedenceGroupForOperator(
DC, name, diagnose ? DRE->getLoc() : SourceLoc());
}
if (auto *OO = dyn_cast<OverloadedDeclRefExpr>(E)) {
Identifier name = OO->getDecls()[0]->getBaseIdentifier();
return lookupPrecedenceGroupForOperator(
DC, name, diagnose ? OO->getLoc() : SourceLoc());
}
if (auto arrowExpr = dyn_cast<ArrowExpr>(E)) {
return getBuiltinPrecedenceGroup(DC, Context.Id_FunctionArrowPrecedence,
diagnose ? arrowExpr->getArrowLoc()
: SourceLoc());
}
// An already-folded binary operator comes up for non-primary use cases
// of this function.
if (auto binaryExpr = dyn_cast<BinaryExpr>(E)) {
return lookupPrecedenceGroupForInfixOperator(DC, binaryExpr->getFn(),
diagnose);
}
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E)) {
return lookupPrecedenceGroupForInfixOperator(DC, DSCE->getFn(), diagnose);
}
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
Identifier name = MRE->getDecl().getDecl()->getBaseIdentifier();
return lookupPrecedenceGroupForOperator(
DC, name, diagnose ? MRE->getLoc() : SourceLoc());
}
// If E is already an ErrorExpr, then we've diagnosed it as invalid already,
// otherwise emit an error.
if (diagnose && !isa<ErrorExpr>(E))
Context.Diags.diagnose(E->getLoc(), diag::unknown_binop);
return nullptr;
}
// The way we compute isEndOfSequence relies on the assumption that
// the sequence-folding algorithm never recurses with a prefix of the
// entire sequence.
static Expr *makeBinOp(ASTContext &Ctx, Expr *Op, Expr *LHS, Expr *RHS,
PrecedenceGroupDecl *opPrecedence,
bool isEndOfSequence) {
if (!LHS || !RHS)
return nullptr;
// If the left-hand-side is a 'try', 'await', or 'unsafe', hoist it up
// turning "(try x) + y" into try (x + y).
if (auto *tryEval = dyn_cast<AnyTryExpr>(LHS)) {
auto sub = makeBinOp(Ctx, Op, tryEval->getSubExpr(), RHS,
opPrecedence, isEndOfSequence);
tryEval->setSubExpr(sub);
return tryEval;
}
if (auto *await = dyn_cast<AwaitExpr>(LHS)) {
auto sub = makeBinOp(Ctx, Op, await->getSubExpr(), RHS,
opPrecedence, isEndOfSequence);
await->setSubExpr(sub);
return await;
}
if (auto *unsafe = dyn_cast<UnsafeExpr>(LHS)) {
auto sub = makeBinOp(Ctx, Op, unsafe->getSubExpr(), RHS,
opPrecedence, isEndOfSequence);
unsafe->setSubExpr(sub);
return unsafe;
}
// If the right operand is a try, await, or unsafe, it's an error unless
// the operator is an assignment or conditional operator and there's
// nothing to the right that didn't parse as part of the right operand.
//
// Generally, nothing to the right will fail to parse as part of the
// right operand because there are no standard operators that have
// lower precedence than assignment operators or the conditional
// operator.
//
// We allow the right operand of the conditional operator to begin
// with 'try' for consistency with the middle operand. This allows:
// x ? try foo() : try bar()
// but not:
// x ? try foo() : try bar() $#! 1
// assuming $#! is some crazy operator with lower precedence
// than the conditional operator.
if (isa<AnyTryExpr>(RHS) || isa<AwaitExpr>(RHS) || isa<UnsafeExpr>(RHS)) {
// If you change this, also change TRY_KIND_SELECT in diagnostics.
enum class TryKindForDiagnostics : unsigned {
Try,
ForceTry,
OptionalTry,
Await,
Unsafe,
};
TryKindForDiagnostics tryKind;
switch (RHS->getKind()) {
case ExprKind::Try:
tryKind = TryKindForDiagnostics::Try;
break;
case ExprKind::ForceTry:
tryKind = TryKindForDiagnostics::ForceTry;
break;
case ExprKind::OptionalTry:
tryKind = TryKindForDiagnostics::OptionalTry;
break;
case ExprKind::Await:
tryKind = TryKindForDiagnostics::Await;
break;
case ExprKind::Unsafe:
tryKind = TryKindForDiagnostics::Unsafe;
break;
default:
llvm_unreachable("unknown try-like expression");
}
if (isa<TernaryExpr>(Op) ||
(opPrecedence && opPrecedence->isAssignment())) {
if (!isEndOfSequence) {
if (isa<TernaryExpr>(Op)) {
Ctx.Diags.diagnose(RHS->getStartLoc(), diag::try_if_rhs_noncovering,
static_cast<unsigned>(tryKind));
} else {
Ctx.Diags.diagnose(RHS->getStartLoc(),
diag::try_assign_rhs_noncovering,
static_cast<unsigned>(tryKind));
}
}
} else {
Ctx.Diags.diagnose(RHS->getStartLoc(), diag::try_rhs,
static_cast<unsigned>(tryKind));
}
}
if (auto *ternary = dyn_cast<TernaryExpr>(Op)) {
// Resolve the ternary expression.
if (!Ctx.CompletionCallback) {
// In code completion we might call preCheckTarget twice - once for
// the first pass and once for the second pass. This is fine since
// preCheckTarget is idempotent.
assert(!ternary->isFolded() && "already folded if expr in sequence?!");
}
ternary->setCondExpr(LHS);
ternary->setElseExpr(RHS);
return ternary;
}
if (auto *assign = dyn_cast<AssignExpr>(Op)) {
// Resolve the assignment expression.
if (!Ctx.CompletionCallback) {
// In code completion we might call preCheckTarget twice - once for
// the first pass and once for the second pass. This is fine since
// preCheckTarget is idempotent.
assert(!assign->isFolded() && "already folded assign expr in sequence?!");
}
assign->setDest(LHS);
assign->setSrc(RHS);
return assign;
}
if (auto *as = dyn_cast<ExplicitCastExpr>(Op)) {
// Resolve the 'as' or 'is' expression.
if (!Ctx.CompletionCallback) {
// In code completion we might call preCheckTarget twice - once for
// the first pass and once for the second pass. This is fine since
// preCheckTarget is idempotent.
assert(!as->isFolded() && "already folded 'as' expr in sequence?!");
}
assert(RHS == as && "'as' with non-type RHS?!");
as->setSubExpr(LHS);
return as;
}
if (auto *arrow = dyn_cast<ArrowExpr>(Op)) {
// Resolve the '->' expression.
if (!Ctx.CompletionCallback) {
// In code completion we might call preCheckTarget twice - once for
// the first pass and once for the second pass. This is fine since
// preCheckTarget is idempotent.
assert(!arrow->isFolded() && "already folded '->' expr in sequence?!");
}
arrow->setArgsExpr(LHS);
arrow->setResultExpr(RHS);
return arrow;
}
// Build the operation.
return BinaryExpr::create(Ctx, LHS, Op, RHS, Op->isImplicit());
}
namespace {
class PrecedenceBound {
llvm::PointerIntPair<PrecedenceGroupDecl*,1,bool> GroupAndIsStrict;
public:
PrecedenceBound() {}
PrecedenceBound(PrecedenceGroupDecl *decl, bool isStrict)
: GroupAndIsStrict(decl, isStrict) {}
bool shouldConsider(PrecedenceGroupDecl *group) {
auto storedGroup = GroupAndIsStrict.getPointer();
if (!storedGroup) return true;
if (!group) return false;
if (storedGroup == group) return !GroupAndIsStrict.getInt();
return group->getASTContext().associateInfixOperators(group, storedGroup)
!= Associativity::Right;
}
};
} // end anonymous namespace
/// foldSequence - Take a sequence of expressions and fold a prefix of
/// it into a tree of BinaryExprs using precedence parsing.
static Expr *foldSequence(DeclContext *DC,
Expr *LHS,
ArrayRef<Expr*> &S,
PrecedenceBound precedenceBound) {
// Invariant: S is even-sized.
// Invariant: All elements at even indices are operator references.
assert(!S.empty());
assert((S.size() & 1) == 0);
struct Op {
Expr *op;
PrecedenceGroupDecl *precedence;
explicit operator bool() const { return op != nullptr; }
};
/// Get the operator, if appropriate to this pass.
auto getNextOperator = [&]() -> Op {
Expr *op = S[0];
// If the operator's precedence is lower than the minimum, stop here.
auto opPrecedence = TypeChecker::lookupPrecedenceGroupForInfixOperator(
DC, op, /*diagnose=*/true);
if (!precedenceBound.shouldConsider(opPrecedence))
return {nullptr, nullptr};
return {op, opPrecedence};
};
// Extract out the first operator.
Op op1 = getNextOperator();
if (!op1) return LHS;
// We will definitely be consuming at least one operator.
// Pull out the prospective RHS and slice off the first two elements.
Expr *RHS = S[1];
S = S.slice(2);
auto &Ctx = DC->getASTContext();
while (!S.empty()) {
assert((S.size() & 1) == 0);
assert(precedenceBound.shouldConsider(op1.precedence));
// If the operator is a cast operator, the RHS can't extend past the type
// that's part of the cast production.
if (isa<ExplicitCastExpr>(op1.op)) {
LHS = makeBinOp(Ctx, op1.op, LHS, RHS, op1.precedence, S.empty());
op1 = getNextOperator();
if (!op1) return LHS;
RHS = S[1];
S = S.slice(2);
continue;
}
// Pull out the next binary operator.
Op op2 = getNextOperator();
if (!op2) break;
// If we're missing precedence info for either operator, treat them
// as non-associative.
Associativity associativity;
if (!op1.precedence || !op2.precedence) {
associativity = Associativity::None;
} else {
associativity =
Ctx.associateInfixOperators(op1.precedence, op2.precedence);
}
// Apply left-associativity immediately by folding the first two
// operands.
if (associativity == Associativity::Left) {
LHS = makeBinOp(Ctx, op1.op, LHS, RHS, op1.precedence, S.empty());
op1 = op2;
RHS = S[1];
S = S.slice(2);
continue;
}
// If the first operator's precedence is lower than the second
// operator's precedence, recursively fold all such
// higher-precedence operators starting from this point, then
// repeat.
if (associativity == Associativity::Right &&
op1.precedence != op2.precedence) {
RHS = foldSequence(DC, RHS, S,
PrecedenceBound(op1.precedence, /*strict*/ true));
continue;
}
// Apply right-associativity by recursively folding operators
// starting from this point, then immediately folding the LHS and RHS.
if (associativity == Associativity::Right) {
RHS = foldSequence(DC, RHS, S,
PrecedenceBound(op1.precedence, /*strict*/ false));
LHS = makeBinOp(Ctx, op1.op, LHS, RHS, op1.precedence, S.empty());
// If we've drained the entire sequence, we're done.
if (S.empty()) return LHS;
// Otherwise, start all over with our new LHS.
return foldSequence(DC, LHS, S, precedenceBound);
}
// If we ended up here, it's because we're either:
// - missing precedence groups,
// - have unordered precedence groups, or
// - have the same precedence group with no associativity.
assert(associativity == Associativity::None);
// Don't diagnose if we're missing a precedence group; this is
// an invalid-code situation.
if (!op1.precedence || !op2.precedence) {
// do nothing
} else if (op1.precedence == op2.precedence) {
assert(op1.precedence->isNonAssociative());
// FIXME: QoI ranges
Ctx.Diags.diagnose(op1.op->getLoc(),
diag::non_associative_adjacent_operators,
op1.precedence->getName())
.highlight(SourceRange(op2.op->getLoc(), op2.op->getLoc()));
} else {
Ctx.Diags.diagnose(op1.op->getLoc(),
diag::unordered_adjacent_operators,
op1.precedence->getName(), op2.precedence->getName())
.highlight(SourceRange(op2.op->getLoc(), op2.op->getLoc()));
}
// Recover by arbitrarily binding the first two.
LHS = makeBinOp(Ctx, op1.op, LHS, RHS, op1.precedence, S.empty());
return foldSequence(DC, LHS, S, precedenceBound);
}
// Fold LHS and RHS together and declare completion.
return makeBinOp(Ctx, op1.op, LHS, RHS, op1.precedence, S.empty());
}
bool TypeChecker::requireOptionalIntrinsics(ASTContext &ctx, SourceLoc loc) {
if (ctx.hasOptionalIntrinsics())
return false;
ctx.Diags.diagnose(loc, diag::optional_intrinsics_not_found);
return true;
}
bool TypeChecker::requirePointerArgumentIntrinsics(ASTContext &ctx,
SourceLoc loc) {
if (ctx.hasPointerArgumentIntrinsics())
return false;
ctx.Diags.diagnose(loc, diag::pointer_argument_intrinsics_not_found);
return true;
}
bool TypeChecker::requireArrayLiteralIntrinsics(ASTContext &ctx,
SourceLoc loc) {
if (ctx.hasArrayLiteralIntrinsics())
return false;
ctx.Diags.diagnose(loc, diag::array_literal_intrinsics_not_found);
return true;
}
Expr *TypeChecker::buildRefExpr(ArrayRef<ValueDecl *> Decls,
DeclContext *UseDC, DeclNameLoc NameLoc,
bool Implicit, FunctionRefInfo functionRefInfo) {
assert(!Decls.empty() && "Must have at least one declaration");
ASSERT(llvm::any_of(Decls, [](ValueDecl *VD) {
return ABIRoleInfo(VD).providesAPI();
}) && "DeclRefExpr can't refer to ABI-only decl");
auto &Context = UseDC->getASTContext();
if (Decls.size() == 1) {
return new (Context) DeclRefExpr(Decls[0], NameLoc, Implicit,
AccessSemantics::Ordinary);
}
Decls = Context.AllocateCopy(Decls);
auto result = new (Context) OverloadedDeclRefExpr(Decls, NameLoc,
functionRefInfo,
Implicit);
return result;
}
static Type lookupDefaultLiteralType(const DeclContext *dc,
StringRef name) {
auto &ctx = dc->getASTContext();
DeclNameRef nameRef(ctx.getIdentifier(name));
auto lookup = TypeChecker::lookupUnqualified(
dc->getModuleScopeContext(),
nameRef, SourceLoc(),
defaultUnqualifiedLookupOptions | NameLookupFlags::ExcludeMacroExpansions
);
TypeDecl *TD = lookup.getSingleTypeResult();
if (!TD)
return Type();
if (TD->isInvalid())
return Type();
if (auto *NTD = dyn_cast<NominalTypeDecl>(TD))
return NTD->getDeclaredType();
return cast<TypeAliasDecl>(TD)->getDeclaredInterfaceType();
}
Type TypeChecker::getDefaultType(ProtocolDecl *protocol, DeclContext *dc) {
auto knownKind = protocol->getKnownProtocolKind();
if (!knownKind)
return Type();
switch (knownKind.value()) {
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, _, __, ___) \
case KnownProtocolKind::Id: \
break;
#define PROTOCOL_WITH_NAME(Id, _) \
case KnownProtocolKind::Id: \
return Type();
#include "swift/AST/KnownProtocols.def"
#undef EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME
#undef PROTOCOL_WITH_NAME
}
return evaluateOrDefault(
protocol->getASTContext().evaluator,
DefaultTypeRequest{knownKind.value(), dc}, nullptr);
}
static std::pair<const char *, bool> lookupDefaultTypeInfoForKnownProtocol(
const KnownProtocolKind knownProtocolKind) {
switch (knownProtocolKind) {
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name, typeName, \
performLocalLookup) \
case KnownProtocolKind::Id: \
return {typeName, performLocalLookup};
#include "swift/AST/KnownProtocols.def"
#undef EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME
default:
return {nullptr, false};
}
}
Type
swift::DefaultTypeRequest::evaluate(Evaluator &evaluator,
KnownProtocolKind knownProtocolKind,
const DeclContext *dc) const {
const char *name;
bool performLocalLookup;
std::tie(name, performLocalLookup) =
lookupDefaultTypeInfoForKnownProtocol(knownProtocolKind);
if (!name)
return nullptr;
Type type;
if (performLocalLookup)
type = lookupDefaultLiteralType(dc, name);
if (!type)
type = lookupDefaultLiteralType(TypeChecker::getStdlibModule(dc), name);
// Strip off one level of sugar; we don't actually want to print
// the name of the typealias itself anywhere.
if (type) {
if (auto boundTypeAlias = dyn_cast<TypeAliasType>(type.getPointer()))
type = boundTypeAlias->getSinglyDesugaredType();
}
return type;
}
Expr *TypeChecker::foldSequence(SequenceExpr *expr, DeclContext *dc) {
// First resolve any unresolved decl references in operator positions.
for (auto i : indices(expr->getElements())) {
if (i % 2 == 0)
continue;
auto *elt = expr->getElement(i);
if (auto *UDRE = dyn_cast<UnresolvedDeclRefExpr>(elt))
elt = TypeChecker::resolveDeclRefExpr(UDRE, dc);
expr->setElement(i, elt);
}
ArrayRef<Expr*> Elts = expr->getElements();
assert(Elts.size() > 1 && "inadequate number of elements in sequence");
assert((Elts.size() & 1) == 1 && "even number of elements in sequence");
Expr *LHS = Elts[0];
Elts = Elts.slice(1);
Expr *Result = ::foldSequence(dc, LHS, Elts, PrecedenceBound());
assert(Elts.empty());
return Result;
}
static SourceFile *createDefaultArgumentSourceFile(StringRef macroExpression,
SourceLoc insertionPoint,
ASTNode target,
DeclContext *dc) {
ASTContext &ctx = dc->getASTContext();
SourceManager &sourceMgr = ctx.SourceMgr;
llvm::SmallString<256> builder;
unsigned line, column;
std::tie(line, column) = sourceMgr.getLineAndColumnInBuffer(insertionPoint);
auto file = dc->getParentSourceFile()->getFilename();
// find a way to pass the file:line:column to macro expansion
// so that we can share same buffer for the same default argument
builder.append(line - 1, '\n');
builder.append(column - 1, ' ');
builder.append(macroExpression);
std::unique_ptr<llvm::MemoryBuffer> buffer;
buffer = llvm::MemoryBuffer::getMemBufferCopy(builder.str(), file);
// Dump default argument to standard output, if requested.
if (ctx.LangOpts.DumpMacroExpansions) {
llvm::errs() << buffer->getBufferIdentifier()
<< "\n------------------------------\n"
<< buffer->getBuffer()
<< "\n------------------------------\n";
}
// Create a new source buffer with the contents of the default argument
unsigned macroBufferID = sourceMgr.addNewSourceBuffer(std::move(buffer));
auto macroBufferRange = sourceMgr.getRangeForBuffer(macroBufferID);
GeneratedSourceInfo sourceInfo{GeneratedSourceInfo::DefaultArgument,
{insertionPoint, 0},
macroBufferRange,
target.getOpaqueValue(),
dc,
nullptr};
sourceMgr.setGeneratedSourceInfo(macroBufferID, sourceInfo);
// Create a source file to hold the macro buffer. This is automatically
// registered with the enclosing module.
auto sourceFile = new (ctx) SourceFile(
*dc->getParentModule(), SourceFileKind::DefaultArgument, macroBufferID,
/*parsingOpts=*/{}, /*isPrimary=*/false);
sourceFile->setImports(dc->getParentSourceFile()->getImports());
return sourceFile;
}
static Expr *synthesizeCallerSideDefault(const ParamDecl *param,
DefaultArgumentExpr *defaultExpr,
DeclContext *dc) {
SourceLoc loc = defaultExpr->getLoc();
auto &ctx = param->getASTContext();
switch (param->getDefaultArgumentKind()) {
#define MAGIC_IDENTIFIER(NAME, STRING) \
case DefaultArgumentKind::NAME: \
return new (ctx) MagicIdentifierLiteralExpr( \
MagicIdentifierLiteralExpr::NAME, loc, /*implicit=*/true);
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::ExpressionMacro: {
// FIXME: ApolloZhu serialize and deserialize expressions instead
SmallString<128> scratch;
const StringRef text = param->getDefaultValueStringRepresentation(scratch);
SourceFile *defaultArgSourceFile =
createDefaultArgumentSourceFile(text, loc, defaultExpr, dc);
auto topLevelItems = defaultArgSourceFile->getTopLevelItems();
for (auto item : topLevelItems) {
if (auto *expr = item.dyn_cast<Expr *>())
if (auto *callerSideMacroExpansionExpr =
dyn_cast<MacroExpansionExpr>(expr)) {
callerSideMacroExpansionExpr->setImplicit();
return callerSideMacroExpansionExpr;
}
}
llvm_unreachable("default argument source file missing caller side macro "
"expansion expression");
}
case DefaultArgumentKind::NilLiteral:
return new (ctx) NilLiteralExpr(loc, /*Implicit=*/true);
break;
case DefaultArgumentKind::EmptyArray: {
auto *initExpr = ArrayExpr::create(ctx, loc, {}, {}, loc);
initExpr->setImplicit();
return initExpr;
}
case DefaultArgumentKind::EmptyDictionary: {
auto *initExpr = DictionaryExpr::create(ctx, loc, {}, {}, loc);
initExpr->setImplicit();
return initExpr;
}
case DefaultArgumentKind::None:
case DefaultArgumentKind::Normal:
case DefaultArgumentKind::Inherited:
case DefaultArgumentKind::StoredProperty:
llvm_unreachable("Not a caller-side default");
}
llvm_unreachable("Unhandled case in switch");
}
Expr *CallerSideDefaultArgExprRequest::evaluate(
Evaluator &evaluator, DefaultArgumentExpr *defaultExpr) const {
auto *param = defaultExpr->getParamDecl();
auto paramTy = defaultExpr->getType();
// Re-create the default argument using the location info of the call site.
auto *dc = defaultExpr->ContextOrCallerSideExpr.get<DeclContext *>();
auto *initExpr = synthesizeCallerSideDefault(param, defaultExpr, dc);
assert(dc && "Expected a DeclContext before type-checking caller-side arg");
auto &ctx = param->getASTContext();
DiagnosticTransaction transaction(ctx.Diags);
if (!TypeChecker::typeCheckParameterDefault(initExpr, dc, paramTy,
param->isAutoClosure(),
/*atCallerSide=*/true)) {
if (param->hasDefaultExpr()) {
// HACK: If we were unable to type-check the default argument in context,
// then retry by type-checking it within the parameter decl, which should
// also fail. This will present the user with a better error message and
// allow us to avoid diagnosing on each call site.
transaction.abort();
(void)param->getTypeCheckedDefaultExpr();
assert(ctx.Diags.hadAnyError());
}
return new (ctx) ErrorExpr(initExpr->getSourceRange(), paramTy);
}
if (param->getDefaultArgumentKind() == DefaultArgumentKind::ExpressionMacro) {
TypeChecker::contextualizeExpr(initExpr, dc);
TypeChecker::checkCallerSideDefaultArgumentEffects(dc, initExpr);
}
return initExpr;
}
bool ClosureHasResultExprRequest::evaluate(Evaluator &evaluator,
ClosureExpr *closure) const {
// A walker that looks for 'return' statements that aren't
// nested within closures or nested declarations.
class FindReturns : public ASTWalker {
bool FoundResultReturn = false;
bool FoundNoResultReturn = false;
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
return Action::SkipNode(expr);
}
PreWalkAction walkToDeclPre(Decl *decl) override {
return Action::SkipNode();
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *stmt) override {
// Record return statements.
if (auto ret = dyn_cast<ReturnStmt>(stmt)) {
// If it has a result, remember that we saw one, but keep
// traversing in case there's a no-result return somewhere.
if (ret->hasResult()) {
FoundResultReturn = true;
// Otherwise, stop traversing.
} else {
FoundNoResultReturn = true;
return Action::Stop();
}
}
return Action::Continue(stmt);
}
public:
bool hasResult() const { return !FoundNoResultReturn && FoundResultReturn; }
};
auto body = closure->getBody();
if (!body)
return false;
FindReturns finder;
body->walk(finder);
return finder.hasResult();
}