-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathConstantnessSemaDiagnostics.cpp
392 lines (356 loc) · 15.2 KB
/
ConstantnessSemaDiagnostics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//===------------------------ ConstantnessSemaDiagnostics.cpp -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements checks for checking whether certain arguments to some
// specific APIs are compile-time constants (see below for the definition of
// constants). In particular, this code checks whether the new os_log APIs are
// invoked with constant arguments, and whether the primitive atomic operations
// are invoked with constant "orderings". These APIs are identified through
// @_semantics attributes.
//
// A "compile-time constant" is either a literal (including
// string/integer/float/boolean/string-interpolation literal) or a call to a
// "constant_evaluable" function (or property) with compile-time constant
// arguments. A closure expression is also considered a compile-time constant
// (it is a constant of a function type).
//===----------------------------------------------------------------------===//
#include "MiscDiagnostics.h"
#include "TypeChecker.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/Assertions.h"
using namespace swift;
/// Check whether a given \p decl has a @_semantics attribute with the given
/// attribute name \c attrName.
static bool hasSemanticsAttr(ValueDecl *decl, StringRef attrName) {
return decl->getAttrs().hasSemanticsAttr(attrName);
}
/// Return true iff the given \p structDecl has a name that matches one of the
/// known atomic orderings structs.
static bool isAtomicOrderingDecl(StructDecl *structDecl) {
ASTContext &astContext = structDecl->getASTContext();
Identifier structName = structDecl->getName();
return (structName == astContext.Id_AtomicLoadOrdering ||
structName == astContext.Id_AtomicStoreOrdering ||
structName == astContext.Id_AtomicUpdateOrdering);
}
/// Return true iff the given nominal type decl \p nominal has a name that
/// matches one of the known OSLog types that need not be a constant in the new
/// os_log APIs.
static bool isOSLogDynamicObject(NominalTypeDecl *nominal) {
ASTContext &astContext = nominal->getASTContext();
Identifier name = nominal->getName();
return (name == astContext.Id_OSLog || name == astContext.Id_OSLogType);
}
/// Return true iff the parameter \p param of function \c funDecl is required to
/// be a constant. This is true if either the function is an os_log function or
/// it is an atomics operation and the parameter represents the ordering.
static bool isParamRequiredToBeConstant(AbstractFunctionDecl *funcDecl, ParamDecl *param) {
assert(funcDecl && param && "funcDecl and param must not be null");
Type paramType;
NominalTypeDecl *nominal;
StructDecl *structDecl;
if (hasSemanticsAttr(funcDecl, semantics::OSLOG_REQUIRES_CONSTANT_ARGUMENTS))
return true;
if (hasSemanticsAttr(funcDecl, semantics::OSLOG_LOG_WITH_LEVEL)) {
// We are looking at a top-level os_log function that accepts level and
// possibly custom log object. Those need not be constants, but every other
// parameter must be.
paramType = param->getTypeInContext();
nominal = paramType->getNominalOrBoundGenericNominal();
return !nominal || !isOSLogDynamicObject(nominal);
}
if (!hasSemanticsAttr(funcDecl,
semantics::ATOMICS_REQUIRES_CONSTANT_ORDERINGS))
return false;
paramType = param->getTypeInContext();
structDecl = paramType->getStructOrBoundGenericStruct();
if (!structDecl)
return false;
return isAtomicOrderingDecl(structDecl);
}
/// Return true iff the \c decl is annotated as
/// @_semantics("constant_evaluable").
static bool hasConstantEvaluableAttr(ValueDecl *decl) {
return hasSemanticsAttr(decl, semantics::CONSTANT_EVALUABLE);
}
/// Return true iff the \p decl is annotated with oslog.message.init semantics
/// attribute.
static bool isOSLogMessageInitializer(ValueDecl *decl) {
return hasSemanticsAttr(decl, semantics::OSLOG_MESSAGE_INIT_STRING_LITERAL) ||
hasSemanticsAttr(decl, semantics::OSLOG_MESSAGE_INIT_INTERPOLATION);
}
/// Check whether \p expr is a compile-time constant. It must either be a
/// literal_expr, which does not include array and dictionary literal, or a
/// closure expression, which is considered a compile-time constant of a
/// function type, or a call to a "constant_evaluable" function (or property)
/// whose arguments are themselves compile-time constants.
static Expr *checkConstantness(Expr *expr) {
SmallVector<Expr *, 4> expressionsToCheck;
expressionsToCheck.push_back(expr);
while (!expressionsToCheck.empty()) {
Expr *expr = expressionsToCheck.pop_back_val();
// Lookthrough identity_expr, tuple, binary_expr and inject_into_optional expressions.
if (IdentityExpr *identityExpr = dyn_cast<IdentityExpr>(expr)) {
expressionsToCheck.push_back(identityExpr->getSubExpr());
continue;
}
if (TupleExpr *tupleExpr = dyn_cast<TupleExpr>(expr)) {
for (Expr *element : tupleExpr->getElements())
expressionsToCheck.push_back(element);
continue;
}
if (BinaryExpr *binaryExpr = dyn_cast<BinaryExpr>(expr)) {
expressionsToCheck.push_back(binaryExpr->getLHS());
expressionsToCheck.push_back(binaryExpr->getRHS());
continue;
}
if (InjectIntoOptionalExpr *optionalExpr =
dyn_cast<InjectIntoOptionalExpr>(expr)) {
expressionsToCheck.push_back(optionalExpr->getSubExpr());
continue;
}
// Literal expressions also includes InterpolatedStringLiteralExpr.
if (isa<LiteralExpr>(expr))
continue;
if (isa<TypeExpr>(expr))
continue;
// Closure expressions are always treated as constants. They are
// constants of function types.
if (isa<AbstractClosureExpr>(expr))
continue;
// Default argument expressions of a constant_evaluable or a
// requires_constant function must be ensured to be a constant by the
// definition of the function.
if (isa<DefaultArgumentExpr>(expr))
continue;
// If this is a member-ref, it has to be annotated constant evaluable.
if (MemberRefExpr *memberRef = dyn_cast<MemberRefExpr>(expr)) {
if (ValueDecl *memberDecl = memberRef->getMember().getDecl()) {
if (hasConstantEvaluableAttr(memberDecl))
continue;
}
return expr;
}
// If this is a variable, it has to be a known constant parameter of the
// enclosing function.
if (DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(expr)) {
ValueDecl *decl = declRef->getDecl();
if (!decl)
return expr;
ParamDecl *paramDecl = dyn_cast<ParamDecl>(decl);
if (!paramDecl)
return expr;
Decl *declContext = paramDecl->getDeclContext()->getAsDecl();
if (!declContext)
return expr;
AbstractFunctionDecl *funcDecl = dyn_cast<AbstractFunctionDecl>(declContext);
if (!funcDecl || !isParamRequiredToBeConstant(funcDecl, paramDecl))
return expr;
continue;
}
if (!isa<ApplyExpr>(expr))
return expr;
ApplyExpr *apply = cast<ApplyExpr>(expr);
ValueDecl *calledValue = apply->getCalledValue();
if (!calledValue)
return expr;
// If this is an enum case, check whether the arguments are constants.
if (isa<EnumElementDecl>(calledValue)) {
for (auto arg : *apply->getArgs())
expressionsToCheck.push_back(arg.getExpr());
continue;
}
AbstractFunctionDecl *callee = dyn_cast<AbstractFunctionDecl>(calledValue);
if (!callee)
return expr;
// If this is an application of OSLogMessage initializer, fail the check
// as this type must be created from string interpolations.
if (isOSLogMessageInitializer(callee))
return expr;
// If this is a constant_evaluable function, check whether the arguments are
// constants.
if (!hasConstantEvaluableAttr(callee))
return expr;
for (auto arg : *apply->getArgs())
expressionsToCheck.push_back(arg.getExpr());
}
return nullptr;
}
/// Return true iff the given \p type is a Stdlib integer type.
static bool isIntegerType(Type type) {
return type->isInt() || type->isInt8() || type->isInt16() ||
type->isInt32() || type->isInt64() || type->isUInt() ||
type->isUInt8() || type->isUInt16() || type->isUInt32() ||
type->isUInt64();
}
/// Return true iff the given \p type is a Float type.
static bool isFloatType(Type type) {
return type->isFloat() || type->isDouble() || type->isFloat80();
}
/// Given an error expression \p errorExpr, diagnose the error based on the type
/// of the expression. For instance, if the expression's type is expressible by
/// a literal e.g. integer, boolean etc. report that it must be a literal.
/// Otherwise, if the expression is a nominal type, report that it must be
/// static member of the type.
static void diagnoseError(Expr *errorExpr, const ASTContext &astContext,
AbstractFunctionDecl *funcDecl) {
DiagnosticEngine &diags = astContext.Diags;
Type exprType = errorExpr->getType();
SourceLoc errorLoc = errorExpr->getLoc();
// Diagnose atomics ordering related error here.
if (hasSemanticsAttr(funcDecl,
semantics::ATOMICS_REQUIRES_CONSTANT_ORDERINGS)) {
NominalTypeDecl *nominalDecl = exprType->getNominalOrBoundGenericNominal();
if (!nominalDecl) {
// This case should normally not happen. This is a safe guard against
// possible mismatch between the atomics library and the compiler.
diags.diagnose(errorLoc, diag::argument_must_be_constant);
}
diags.diagnose(errorLoc, diag::atomics_ordering_must_be_constant,
nominalDecl->getName());
return;
}
// Diagnose os_log specific errors here.
// Diagnose primitive stdlib types.
if (exprType->isBool()) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_bool_literal);
return;
}
if (exprType->isString()) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_string_literal);
return;
}
if (isIntegerType(exprType)) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_integer_literal);
return;
}
if (isFloatType(exprType)) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_float_literal);
return;
}
if (exprType->is<MetatypeType>()) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_metatype_literal);
return;
}
if (exprType->is<AnyFunctionType>()) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_closure);
return;
}
if (EnumDecl *enumDecl = exprType->getEnumOrBoundGenericEnum()) {
diags.diagnose(errorLoc, diag::oslog_arg_must_be_enum_case,
enumDecl->getName());
return;
}
NominalTypeDecl *nominalDecl = exprType->getNominalOrBoundGenericNominal();
if (!nominalDecl) {
// This case should normally not happen. This is a safe guard against
// possible mismatch between the os overlay and the compiler.
diags.diagnose(errorLoc, diag::argument_must_be_constant);
return;
}
// If this is OSLogMessage, it should be a string-interpolation literal.
Identifier declName = nominalDecl->getName();
if (declName == astContext.Id_OSLogMessage ||
nominalDecl->hasSemanticsAttr(semantics::OSLOG_MESSAGE_TYPE)) {
diags.diagnose(errorLoc, diag::oslog_message_must_be_string_interpolation);
return;
}
diags.diagnose(errorLoc, diag::oslog_arg_must_be_type_member_access,
declName);
}
/// Given a call \c callExpr, if some or all of its arguments are required to be
/// constants, check that property on the arguments.
static void diagnoseConstantArgumentRequirementOfCall(const CallExpr *callExpr,
const ASTContext &ctx) {
assert(callExpr && callExpr->getType() &&
"callExpr should have a valid type");
ValueDecl *calledDecl = callExpr->getCalledValue();
if (!calledDecl || !isa<AbstractFunctionDecl>(calledDecl))
return;
AbstractFunctionDecl *callee = cast<AbstractFunctionDecl>(calledDecl);
// Collect argument indices that are required to be constants.
SmallVector<unsigned, 4> constantArgumentIndices;
auto paramList = callee->getParameters();
for (unsigned i = 0; i < paramList->size(); ++i) {
ParamDecl *param = paramList->get(i);
if (isParamRequiredToBeConstant(callee, param))
constantArgumentIndices.push_back(i);
}
if (constantArgumentIndices.empty())
return;
// Check that the arguments at the constantArgumentIndices are constants.
SmallVector<Expr *, 4> arguments;
for (auto arg : *callExpr->getArgs())
arguments.push_back(arg.getExpr());
for (unsigned constantIndex : constantArgumentIndices) {
assert(constantIndex < arguments.size() &&
"constantIndex exceeds the number of arguments to the function");
Expr *argument = arguments[constantIndex];
Expr *errorExpr = checkConstantness(argument);
if (errorExpr)
diagnoseError(errorExpr, ctx, callee);
}
}
void swift::diagnoseConstantArgumentRequirement(
const Expr *expr, const DeclContext *declContext) {
class ConstantReqCallWalker : public ASTWalker {
DeclContext *DC;
bool insideClosure;
public:
ConstantReqCallWalker(DeclContext *DC) : DC(DC), insideClosure(false) {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
// Descend until we find a call expressions. Note that the input expression
// could be an assign expression or another expression that contains the
// call.
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
// Handle closure expressions separately as we may need to
// manually descend into the body.
if (auto *closureExpr = dyn_cast<ClosureExpr>(expr)) {
return walkToClosureExprPre(closureExpr);
}
if (!expr || isa<ErrorExpr>(expr) || !expr->getType())
return Action::SkipNode(expr);
if (auto *callExpr = dyn_cast<CallExpr>(expr)) {
diagnoseConstantArgumentRequirementOfCall(callExpr, DC->getASTContext());
}
return Action::Continue(expr);
}
PreWalkResult<Expr *> walkToClosureExprPre(ClosureExpr *closure) {
DC = closure;
insideClosure = true;
return Action::Continue(closure);
}
PostWalkResult<Expr *> walkToExprPost(Expr *expr) override {
if (auto *closureExpr = dyn_cast<ClosureExpr>(expr)) {
// Reset the DeclContext to the outer scope if we descended
// into a closure expr and check whether or not we are still
// within a closure context.
DC = closureExpr->getParent();
insideClosure = isa<ClosureExpr>(DC);
}
return Action::Continue(expr);
}
};
// We manually check closure bodies from their outer contexts,
// so bail early if we are being called directly on expressions
// inside of a closure body.
if (isa<ClosureExpr>(declContext)) {
return;
}
ConstantReqCallWalker walker(const_cast<DeclContext *>(declContext));
const_cast<Expr *>(expr)->walk(walker);
}