-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathPerformanceInlinerUtils.cpp
959 lines (858 loc) · 33.4 KB
/
PerformanceInlinerUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
//===--- PerformanceInlinerUtils.cpp - Performance inliner utilities. -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/IsSelfRecursiveAnalysis.h"
#include "swift/SILOptimizer/Utils/PerformanceInlinerUtils.h"
#include "swift/AST/Module.h"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/CommandLine.h"
llvm::cl::opt<std::string>
SILInlineNeverFuns("sil-inline-never-functions", llvm::cl::init(""),
llvm::cl::desc("Never inline functions whose name "
"includes this string."));
llvm::cl::list<std::string>
SILInlineNeverFun("sil-inline-never-function", llvm::cl::CommaSeparated,
llvm::cl::desc("Never inline functions whose name "
"is this string"));
//===----------------------------------------------------------------------===//
// ConstantTracker
//===----------------------------------------------------------------------===//
void ConstantTracker::trackInst(SILInstruction *inst) {
if (auto *LI = dyn_cast<LoadInst>(inst)) {
SILValue baseAddr = scanProjections(LI->getOperand());
if (SILInstruction *loadLink = getMemoryContent(baseAddr))
links[LI] = loadLink;
} else if (auto *SI = dyn_cast<StoreInst>(inst)) {
SILValue baseAddr = scanProjections(SI->getOperand(1));
memoryContent[baseAddr] = SI;
} else if (auto *CAI = dyn_cast<CopyAddrInst>(inst)) {
if (!CAI->isTakeOfSrc()) {
// Treat a copy_addr as a load + store
SILValue loadAddr = scanProjections(CAI->getOperand(0));
if (SILInstruction *loadLink = getMemoryContent(loadAddr)) {
links[CAI] = loadLink;
SILValue storeAddr = scanProjections(CAI->getOperand(1));
memoryContent[storeAddr] = CAI;
}
}
}
}
SILValue ConstantTracker::scanProjections(SILValue addr,
SmallVectorImpl<Projection> *Result) {
for (;;) {
if (auto *I = Projection::isAddressProjection(addr)) {
if (Result) {
Result->push_back(Projection(I));
}
addr = I->getOperand(0);
continue;
}
if (SILValue param = getParam(addr)) {
// Go to the caller.
addr = param;
continue;
}
// Return the base address = the first address which is not a projection.
return addr;
}
}
SILValue ConstantTracker::getStoredValue(SILInstruction *loadInst,
ProjectionPath &projStack) {
SILInstruction *store = links[loadInst];
if (!store && callerTracker)
store = callerTracker->links[loadInst];
if (!store) return SILValue();
assert(isa<LoadInst>(loadInst) || isa<CopyAddrInst>(loadInst));
// Push the address projections of the load onto the stack.
SmallVector<Projection, 4> loadProjections;
scanProjections(loadInst->getOperand(0), &loadProjections);
for (const Projection &proj : loadProjections) {
projStack.push_back(proj);
}
// Pop the address projections of the store from the stack.
SmallVector<Projection, 4> storeProjections;
scanProjections(store->getOperand(1), &storeProjections);
for (auto iter = storeProjections.rbegin(); iter != storeProjections.rend();
++iter) {
const Projection &proj = *iter;
// The corresponding load-projection must match the store-projection.
if (projStack.empty() || projStack.back() != proj)
return SILValue();
projStack.pop_back();
}
if (isa<StoreInst>(store))
return store->getOperand(0);
// The copy_addr instruction is both a load and a store. So we follow the link
// again.
assert(isa<CopyAddrInst>(store));
return getStoredValue(store, projStack);
}
// Get the aggregate member based on the top of the projection stack.
static SILValue getMember(SILInstruction *inst, ProjectionPath &projStack) {
if (!projStack.empty()) {
const Projection &proj = projStack.back();
return proj.getOperandForAggregate(inst);
}
return SILValue();
}
SILValue swift::stripFunctionConversions(SILValue val) {
SILValue result = nullptr;
for (;;) {
if (auto ti = dyn_cast<ThinToThickFunctionInst>(val)) {
val = ti->getOperand();
result = val;
continue;
} else if (auto cfi = dyn_cast<ConvertFunctionInst>(val)) {
val = cfi->getOperand();
result = val;
continue;
} else if (auto cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(val)) {
val = cvt->getOperand();
result = val;
continue;
} else {
break;
}
}
return result;
}
SILInstruction *ConstantTracker::getDef(SILValue val,
ProjectionPath &projStack) {
// Track the value up the dominator tree.
for (;;) {
if (auto *inst = dyn_cast<SingleValueInstruction>(val)) {
if (auto pi = Projection::isObjectProjection(val)) {
// Extract a member from a struct/tuple/enum.
projStack.push_back(Projection(pi));
val = pi->getOperand(0);
continue;
} else if (SILValue member = getMember(inst, projStack)) {
// The opposite of a projection instruction: composing a struct/tuple.
projStack.pop_back();
val = member;
continue;
} else if (SILValue loadedVal = getStoredValue(inst, projStack)) {
// A value loaded from memory.
val = loadedVal;
continue;
} else if (auto base = stripFunctionConversions(inst)) {
val = base;
continue;
}
return inst;
} else if (SILValue param = getParam(val)) {
// Continue in the caller.
val = param;
continue;
}
return nullptr;
}
}
ConstantTracker::IntConst ConstantTracker::getBuiltinConst(BuiltinInst *BI, int depth) {
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
OperandValueArrayRef Args = BI->getArguments();
switch (Builtin.ID) {
default: break;
// Fold comparison predicates.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
{
IntConst lhs = getIntConst(Args[0], depth);
IntConst rhs = getIntConst(Args[1], depth);
if (lhs.isValid && rhs.isValid) {
return IntConst(
constantFoldComparisonInt(lhs.value, rhs.value, Builtin.ID),
lhs.isFromCaller || rhs.isFromCaller);
}
break;
}
case BuiltinValueKind::SAddOver:
case BuiltinValueKind::UAddOver:
case BuiltinValueKind::SSubOver:
case BuiltinValueKind::USubOver:
case BuiltinValueKind::SMulOver:
case BuiltinValueKind::UMulOver: {
IntConst lhs = getIntConst(Args[0], depth);
IntConst rhs = getIntConst(Args[1], depth);
if (lhs.isValid && rhs.isValid) {
bool IgnoredOverflow;
return IntConst(constantFoldBinaryWithOverflow(lhs.value, rhs.value,
IgnoredOverflow,
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID)),
lhs.isFromCaller || rhs.isFromCaller);
}
break;
}
case BuiltinValueKind::SDiv:
case BuiltinValueKind::SRem:
case BuiltinValueKind::UDiv:
case BuiltinValueKind::URem: {
IntConst lhs = getIntConst(Args[0], depth);
IntConst rhs = getIntConst(Args[1], depth);
if (lhs.isValid && rhs.isValid && rhs.value != 0) {
bool IgnoredOverflow;
return IntConst(constantFoldDiv(lhs.value, rhs.value,
IgnoredOverflow, Builtin.ID),
lhs.isFromCaller || rhs.isFromCaller);
}
break;
}
case BuiltinValueKind::And:
case BuiltinValueKind::AShr:
case BuiltinValueKind::LShr:
case BuiltinValueKind::Or:
case BuiltinValueKind::Shl:
case BuiltinValueKind::Xor: {
IntConst lhs = getIntConst(Args[0], depth);
IntConst rhs = getIntConst(Args[1], depth);
if (lhs.isValid && rhs.isValid) {
return IntConst(constantFoldBitOperation(lhs.value, rhs.value,
Builtin.ID),
lhs.isFromCaller || rhs.isFromCaller);
}
break;
}
case BuiltinValueKind::Trunc:
case BuiltinValueKind::ZExt:
case BuiltinValueKind::SExt:
case BuiltinValueKind::TruncOrBitCast:
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
IntConst val = getIntConst(Args[0], depth);
if (val.isValid) {
return IntConst(constantFoldCast(val.value, Builtin), val.isFromCaller);
}
break;
}
}
return IntConst();
}
// Tries to evaluate the integer constant of a value. The \p depth is used
// to limit the complexity.
ConstantTracker::IntConst ConstantTracker::getIntConst(SILValue val, int depth) {
// Don't spend too much time with constant evaluation.
if (depth >= 10)
return IntConst();
SILInstruction *I = getDef(val);
if (!I)
return IntConst();
if (auto *IL = dyn_cast<IntegerLiteralInst>(I)) {
return IntConst(IL->getValue(), IL->getFunction() != F);
}
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
if (constCache.count(BI) != 0)
return constCache[BI];
IntConst builtinConst = getBuiltinConst(BI, depth + 1);
constCache[BI] = builtinConst;
return builtinConst;
}
return IntConst();
}
// Returns the taken block of a terminator instruction if the condition turns
// out to be constant.
SILBasicBlock *ConstantTracker::getTakenBlock(TermInst *term) {
if (auto *CBI = dyn_cast<CondBranchInst>(term)) {
IntConst condConst = getIntConst(CBI->getCondition());
if (condConst.isFromCaller) {
return condConst.value != 0 ? CBI->getTrueBB() : CBI->getFalseBB();
}
return nullptr;
}
if (auto *SVI = dyn_cast<SwitchValueInst>(term)) {
IntConst switchConst = getIntConst(SVI->getOperand());
if (switchConst.isFromCaller) {
for (unsigned Idx = 0; Idx < SVI->getNumCases(); ++Idx) {
auto switchCase = SVI->getCase(Idx);
if (auto *IL = dyn_cast<IntegerLiteralInst>(switchCase.first)) {
if (switchConst.value == IL->getValue())
return switchCase.second;
} else {
return nullptr;
}
}
if (SVI->hasDefault())
return SVI->getDefaultBB();
}
return nullptr;
}
if (auto *SEI = dyn_cast<SwitchEnumInst>(term)) {
if (SILInstruction *def = getDefInCaller(SEI->getOperand())) {
if (auto *EI = dyn_cast<EnumInst>(def)) {
for (unsigned Idx = 0; Idx < SEI->getNumCases(); ++Idx) {
auto enumCase = SEI->getCase(Idx);
if (enumCase.first == EI->getElement())
return enumCase.second;
}
if (SEI->hasDefault())
return SEI->getDefaultBB();
}
}
return nullptr;
}
if (auto *CCB = dyn_cast<CheckedCastBranchInst>(term)) {
if (SILInstruction *def = getDefInCaller(CCB->getOperand())) {
if (auto *UCI = dyn_cast<UpcastInst>(def)) {
SILType castType = UCI->getOperand()->getType();
if (CCB->getTargetLoweredType().isExactSuperclassOf(castType)) {
return CCB->getSuccessBB();
}
if (!castType.isBindableToSuperclassOf(CCB->getTargetLoweredType())) {
return CCB->getFailureBB();
}
}
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Shortest path analysis
//===----------------------------------------------------------------------===//
int ShortestPathAnalysis::getEntryDistFromPreds(const SILBasicBlock *BB,
int LoopDepth) {
int MinDist = InitialDist;
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
BlockInfo *PredInfo = getBlockInfo(Pred);
Distances &PDists = PredInfo->getDistances(LoopDepth);
int DistFromEntry = PDists.DistFromEntry + PredInfo->Length +
PDists.LoopHeaderLength;
assert(DistFromEntry >= 0);
if (DistFromEntry < MinDist)
MinDist = DistFromEntry;
}
return MinDist;
}
int ShortestPathAnalysis::getExitDistFromSuccs(const SILBasicBlock *BB,
int LoopDepth) {
int MinDist = InitialDist;
for (const SILSuccessor &Succ : BB->getSuccessors()) {
BlockInfo *SuccInfo = getBlockInfo(Succ);
Distances &SDists = SuccInfo->getDistances(LoopDepth);
if (SDists.DistToExit < MinDist)
MinDist = SDists.DistToExit;
}
return MinDist;
}
/// Detect an edge from the loop pre-header's predecessor to the loop exit
/// block. Such an edge "short-cuts" a loop if it is never iterated. But usually
/// it is the less frequent case and we want to ignore it.
/// E.g. it handles the case of N==0 for
/// for i in 0..<N { ... }
/// If the \p Loop has such an edge the source block of this edge is returned,
/// which is the predecessor of the loop pre-header.
static SILBasicBlock *detectLoopBypassPreheader(SILLoop *Loop) {
SILBasicBlock *Pred = Loop->getLoopPreheader();
if (!Pred)
return nullptr;
SILBasicBlock *PredPred = Pred->getSinglePredecessorBlock();
if (!PredPred)
return nullptr;
auto *CBR = dyn_cast<CondBranchInst>(PredPred->getTerminator());
if (!CBR)
return nullptr;
SILBasicBlock *Succ = (CBR->getTrueBB() == Pred ? CBR->getFalseBB() :
CBR->getTrueBB());
for (SILBasicBlock *PredOfSucc : Succ->getPredecessorBlocks()) {
SILBasicBlock *Exiting = PredOfSucc->getSinglePredecessorBlock();
if (!Exiting)
Exiting = PredOfSucc;
if (Loop->contains(Exiting))
return PredPred;
}
return nullptr;
}
void ShortestPathAnalysis::analyzeLoopsRecursively(SILLoop *Loop, int LoopDepth) {
if (LoopDepth >= MaxNumLoopLevels)
return;
// First dive into the inner loops.
for (SILLoop *SubLoop : Loop->getSubLoops()) {
analyzeLoopsRecursively(SubLoop, LoopDepth + 1);
}
BlockInfo *HeaderInfo = getBlockInfo(Loop->getHeader());
Distances &HeaderDists = HeaderInfo->getDistances(LoopDepth);
// Initial values for the entry (== header) and exit-predecessor (== header as
// well).
HeaderDists.DistFromEntry = 0;
HeaderDists.DistToExit = 0;
solveDataFlow(Loop->getBlocks(), LoopDepth);
int LoopLength = getExitDistFromSuccs(Loop->getHeader(), LoopDepth) +
HeaderInfo->getLength(LoopDepth);
HeaderDists.DistToExit = LoopLength;
// If there is a loop bypass edge, add the loop length to the loop pre-pre-
// header instead to the header. This actually let us ignore the loop bypass
// edge in the length calculation for the loop's parent scope.
if (SILBasicBlock *Bypass = detectLoopBypassPreheader(Loop))
HeaderInfo = getBlockInfo(Bypass);
// Add the full loop length (= assumed-iteration-count * length) to the loop
// header so that it is considered in the parent scope.
HeaderInfo->getDistances(LoopDepth - 1).LoopHeaderLength =
LoopCount * LoopLength;
}
ShortestPathAnalysis::Weight ShortestPathAnalysis::
getWeight(SILBasicBlock *BB, Weight CallerWeight) {
assert(BB->getParent() == F);
// Return a conservative default if the analysis was not done due to a high number of blocks.
if (BlockInfos.empty())
return Weight(CallerWeight.ScopeLength + ColdBlockLength, CallerWeight.LoopWeight);
SILLoop *Loop = LI->getLoopFor(BB);
if (!Loop) {
// We are not in a loop. So just account the length of our function scope
// in to the length of the CallerWeight.
return Weight(CallerWeight.ScopeLength + getScopeLength(BB, 0),
CallerWeight.LoopWeight);
}
int LoopDepth = Loop->getLoopDepth();
// Deal with the corner case of having more than 4 nested loops.
while (LoopDepth >= MaxNumLoopLevels) {
--LoopDepth;
Loop = Loop->getParentLoop();
}
Weight W(getScopeLength(BB, LoopDepth), SingleLoopWeight);
// Add weights for all the loops BB is in.
while (Loop) {
assert(LoopDepth > 0);
BlockInfo *HeaderInfo = getBlockInfo(Loop->getHeader());
int InnerLoopLength = HeaderInfo->getScopeLength(LoopDepth) *
ShortestPathAnalysis::LoopCount;
int OuterLoopWeight = SingleLoopWeight;
int OuterScopeLength = HeaderInfo->getScopeLength(LoopDepth - 1);
// Reaching the outermost loop, we use the CallerWeight to get the outer
// length+loopweight.
if (LoopDepth == 1) {
// If the apply in the caller is not in a significant loop, just stop with
// what we have now.
if (CallerWeight.LoopWeight < 4)
return W;
// If this function is part of the caller's scope length take the caller's
// scope length. Note: this is not the case e.g. if the apply is in a
// then-branch of an if-then-else in the caller and the else-branch is
// the short path.
if (CallerWeight.ScopeLength > OuterScopeLength)
OuterScopeLength = CallerWeight.ScopeLength;
OuterLoopWeight = CallerWeight.LoopWeight;
}
assert(OuterScopeLength >= InnerLoopLength);
// If the current loop is only a small part of its outer loop, we don't
// take the outer loop that much into account. Only if the current loop is
// actually the "main part" in the outer loop we add the full loop weight
// for the outer loop.
if (OuterScopeLength < InnerLoopLength * 2) {
W.LoopWeight += OuterLoopWeight - 1;
} else if (OuterScopeLength < InnerLoopLength * 3) {
W.LoopWeight += OuterLoopWeight - 2;
} else if (OuterScopeLength < InnerLoopLength * 4) {
W.LoopWeight += OuterLoopWeight - 3;
} else {
return W;
}
--LoopDepth;
Loop = Loop->getParentLoop();
}
assert(LoopDepth == 0);
return W;
}
void ShortestPathAnalysis::dump() {
printFunction(llvm::errs());
}
void ShortestPathAnalysis::printFunction(llvm::raw_ostream &OS) {
OS << "SPA @" << F->getName() << "\n";
for (SILBasicBlock &BB : *F) {
printBlockInfo(OS, &BB, 0);
}
for (SILLoop *Loop : *LI) {
printLoop(OS, Loop, 1);
}
}
void ShortestPathAnalysis::printLoop(llvm::raw_ostream &OS, SILLoop *Loop,
int LoopDepth) {
if (LoopDepth >= MaxNumLoopLevels)
return;
assert(LoopDepth == (int)Loop->getLoopDepth());
OS << "Loop bb" << Loop->getHeader()->getDebugID() << ":\n";
for (SILBasicBlock *BB : Loop->getBlocks()) {
printBlockInfo(OS, BB, LoopDepth);
}
for (SILLoop *SubLoop : Loop->getSubLoops()) {
printLoop(OS, SubLoop, LoopDepth + 1);
}
}
void ShortestPathAnalysis::printBlockInfo(llvm::raw_ostream &OS,
SILBasicBlock *BB, int LoopDepth) {
BlockInfo *BBInfo = getBlockInfo(BB);
Distances &D = BBInfo->getDistances(LoopDepth);
OS << " bb" << BB->getDebugID() << ": length=" << BBInfo->Length << '+'
<< D.LoopHeaderLength << ", d-entry=" << D.DistFromEntry
<< ", d-exit=" << D.DistToExit << '\n';
}
void ShortestPathAnalysis::Weight::updateBenefit(int &Benefit,
int Importance) const {
assert(isValid());
int newBenefit = 0;
// Use some heuristics. The basic idea is: length is bad, loops are good.
if (ScopeLength > 320) {
newBenefit = Importance;
} else if (ScopeLength > 160) {
newBenefit = Importance + LoopWeight * 4;
} else if (ScopeLength > 80) {
newBenefit = Importance + LoopWeight * 8;
} else if (ScopeLength > 40) {
newBenefit = Importance + LoopWeight * 12;
} else if (ScopeLength > 20) {
newBenefit = Importance + LoopWeight * 16;
} else {
newBenefit = Importance + 20 + LoopWeight * 16;
}
// We don't accumulate the benefit instead we max it.
if (newBenefit > Benefit)
Benefit = newBenefit;
}
SemanticFunctionLevel swift::getSemanticFunctionLevel(SILFunction *function) {
// Currently, we only consider "array" semantic calls to be "optimizable
// semantic functions" (non-transient) because we only have semantic passes
// that recognize array operations, for example, hoisting them out of loops.
//
// Compiler "hints" and informational annotations (like remarks) should
// ideally use a separate annotation rather than @_semantics.
if (isFixedStorageSemanticsCallKind(function)) {
return SemanticFunctionLevel::Fundamental;
}
switch (getArraySemanticsKind(function)) {
case ArrayCallKind::kNone:
return SemanticFunctionLevel::Transient;
case ArrayCallKind::kArrayInitEmpty:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kEndMutation:
case ArrayCallKind::kMutateUnknown:
return SemanticFunctionLevel::Fundamental;
// These have nested semantic calls, but they also expose the underlying
// buffer so must be treated as fundamental, and should not be inlined until
// after array semantic passes have run.
//
// TODO: Once Nested semantics calls are preserved during early inlining,
// change these to Nested.
case ArrayCallKind::kArrayInit:
case ArrayCallKind::kArrayUninitialized:
case ArrayCallKind::kWithUnsafeMutableBufferPointer:
return SemanticFunctionLevel::Fundamental;
case ArrayCallKind::kReserveCapacityForAppend:
case ArrayCallKind::kAppendContentsOf:
case ArrayCallKind::kAppendElement:
return SemanticFunctionLevel::Nested;
// Compiler intrinsics hide "normal" semantic methods, such as
// "array.uninitialized" or "array.end_mutation"--they are intentionally
// transient and should be inlined away immediately.
case ArrayCallKind::kArrayUninitializedIntrinsic:
case ArrayCallKind::kArrayFinalizeIntrinsic:
return SemanticFunctionLevel::Transient;
} // end switch
llvm_unreachable("covered switch");
}
/// Return true if \p apply calls into an optimizable semantic function from
/// within another semantic function, or from a "trivial" wrapper.
///
/// Checking for wrappers, in addition to directly annotated nested semantic
/// functions, allows semantic function calls to be wrapped inside trivial
/// getters and closures without needing to explicitly annotate those wrappers.
///
/// For example:
///
/// public var count: Int { getCount() }
/// @_semantic("count") internal func getCount() { ... }
///
/// Wrappers may be closures, so this semantic "nesting" is allowed:
///
/// @_semantics("append")
/// public func append(...) {
/// defer { endMutation() }
/// ...
/// }
/// @_semantics("endMutation") func endMutation() { ... }
///
/// TODO: if simply checking the call arguments results in too many functions
/// being considered "wrappers", thus preventing useful inlining, consider
/// either using a cost metric to check for low-cost wrappers or directly
/// checking for getters or closures.
///
/// TODO: Move this into PerformanceInlinerUtils and apply it to
/// getEligibleFunction. The mid-level pipeline should not inline semantic
/// functions into their wrappers. If such wrappers have still not been fully
/// inlined by the time late inlining runs, then the semantic call can be
/// inlined into the wrapper at that time.
bool swift::isNestedSemanticCall(FullApplySite apply) {
auto callee = apply.getReferencedFunctionOrNull();
if (!callee) {
return false;
}
if (!isOptimizableSemanticFunction(callee)) {
return false;
}
if (isOptimizableSemanticFunction(apply.getFunction())) {
return true;
}
// In a trivial wrapper, all call arguments are simply forwarded from the
// wrapper's arguments.
auto isForwardedArg = [](SILValue arg) {
while (true) {
if (isa<SILFunctionArgument>(arg) || isa<LiteralInst>(arg)) {
return true;
}
auto *argInst = arg->getDefiningInstruction();
if (!argInst) {
return false;
}
if (!getSingleValueCopyOrCast(argInst)) {
return false;
}
arg = argInst->getOperand(0);
}
};
return llvm::all_of(apply.getArguments(), isForwardedArg);
}
/// Checks if a generic callee and caller have compatible layout constraints.
static bool isCallerAndCalleeLayoutConstraintsCompatible(FullApplySite AI) {
SILFunction *Callee = AI.getReferencedFunctionOrNull();
assert(Callee && "Trying to optimize a dynamic function!?");
auto CalleeSig = Callee->getLoweredFunctionType()
->getInvocationGenericSignature();
auto AISubs = AI.getSubstitutionMap();
SmallVector<GenericTypeParamType *, 4> SubstParams;
CalleeSig->forEachParam([&](GenericTypeParamType *Param, bool Canonical) {
if (Canonical)
SubstParams.push_back(Param);
});
for (auto Param : SubstParams) {
// Map the parameter into context
auto ContextTy = Callee->mapTypeIntoContext(Param->getCanonicalType());
auto Archetype = ContextTy->getAs<ArchetypeType>();
if (!Archetype)
continue;
auto Layout = Archetype->getLayoutConstraint();
if (!Layout)
continue;
// The generic parameter has a layout constraint.
// Check that the substitution has the same constraint.
auto AIReplacement = Type(Param).subst(AISubs);
if (Layout->isClass()) {
if (!AIReplacement->satisfiesClassConstraint())
return false;
} else {
auto AIArchetype = AIReplacement->getAs<ArchetypeType>();
if (!AIArchetype)
return false;
auto AILayout = AIArchetype->getLayoutConstraint();
if (!AILayout)
return false;
if (AILayout != Layout)
return false;
}
}
return true;
}
// Returns the callee of an apply_inst if it is basically inlinable.
SILFunction *swift::getEligibleFunction(FullApplySite AI,
InlineSelection WhatToInline,
IsSelfRecursiveAnalysis *SRA) {
SILFunction *Callee = AI.getReferencedFunctionOrNull();
if (!Callee) {
return nullptr;
}
// Not all apply sites can be inlined, even if they're direct.
if (!SILInliner::canInlineApplySite(AI))
return nullptr;
// If our inline selection is only always inline, do a quick check if we have
// an always inline function and bail otherwise.
if (WhatToInline == InlineSelection::OnlyInlineAlways &&
Callee->getInlineStrategy() != AlwaysInline) {
return nullptr;
}
ModuleDecl *SwiftModule = Callee->getModule().getSwiftModule();
bool IsInStdlib = (SwiftModule->isStdlibModule() ||
SwiftModule->isOnoneSupportModule());
// Don't inline functions that are marked with the @_semantics or @_effects
// attribute if the inliner is asked not to inline them.
if (Callee->hasSemanticsAttrs() || Callee->hasEffectsKind()) {
if (WhatToInline >= InlineSelection::NoSemanticsAndEffects) {
// TODO: for stable optimization of semantics, prevent inlining whenever
// isOptimizableSemanticFunction(Callee) is true.
if (getSemanticFunctionLevel(Callee) == SemanticFunctionLevel::Fundamental
|| Callee->hasEffectsKind()) {
return nullptr;
}
if (Callee->hasSemanticsAttr("inline_late"))
return nullptr;
}
// The "availability" semantics attribute is treated like global-init.
if (Callee->hasSemanticsAttrs() &&
WhatToInline != InlineSelection::Everything &&
(Callee->hasSemanticsAttrThatStartsWith("availability") ||
(Callee->hasSemanticsAttrThatStartsWith("inline_late")))) {
return nullptr;
}
if (Callee->hasSemanticsAttrs() &&
WhatToInline == InlineSelection::Everything) {
if (Callee->hasSemanticsAttrThatStartsWith("inline_late") && IsInStdlib) {
return nullptr;
}
}
}
// We can't inline external declarations.
if (Callee->empty() || Callee->isExternalDeclaration()) {
return nullptr;
}
// Explicitly disabled inlining or optimization.
if (Callee->getInlineStrategy() == NoInline) {
return nullptr;
}
if (!SILInlineNeverFuns.empty() &&
Callee->getName().contains(SILInlineNeverFuns))
return nullptr;
if (!SILInlineNeverFun.empty() &&
SILInlineNeverFun.end() != std::find(SILInlineNeverFun.begin(),
SILInlineNeverFun.end(),
Callee->getName())) {
return nullptr;
}
if (!Callee->shouldOptimize()) {
return nullptr;
}
SILFunction *Caller = AI.getFunction();
// We don't support inlining a function that binds dynamic self because we
// have no mechanism to preserve the original function's local self metadata.
if (mayBindDynamicSelf(Callee)) {
// Check if passed Self is the same as the Self of the caller.
// In this case, it is safe to inline because both functions
// use the same Self.
if (!AI.hasSelfArgument() || !Caller->hasDynamicSelfMetadata()) {
return nullptr;
}
auto CalleeSelf = stripCasts(AI.getSelfArgument());
auto CallerSelf = Caller->getDynamicSelfMetadata();
if (CalleeSelf != SILValue(CallerSelf)) {
return nullptr;
}
}
// Detect self-recursive calls.
if (Caller == Callee) {
return nullptr;
}
// A non-fragile function may not be inlined into a fragile function.
if (!Callee->canBeInlinedIntoCaller(Caller->getSerializedKind())) {
if (Caller->isAnySerialized() &&
!Callee->hasValidLinkageForFragileRef(Caller->getSerializedKind())) {
llvm::errs() << "caller: " << Caller->getName() << "\n";
llvm::errs() << "callee: " << Callee->getName() << "\n";
ASSERT(false && "Should never be inlining a resilient function into "
"a fragile function");
}
return nullptr;
}
// Inlining self-recursive functions into other functions can result
// in excessive code duplication since we run the inliner multiple
// times in our pipeline.
if (SRA->get(Callee)->get()) {
return nullptr;
}
// We cannot inline function with layout constraints on its generic types
// if the corresponding substitution type does not have the same constraints.
// The reason for this restriction is that we'd need to be able to express
// in SIL something like casting a value of generic type T into a value of
// generic type T: _LayoutConstraint, which is impossible currently.
if (AI.hasSubstitutions()) {
if (!isCallerAndCalleeLayoutConstraintsCompatible(AI) &&
// TODO: revisit why we can make an exception for inline-always
// functions. Some tests depend on it.
Callee->getInlineStrategy() != AlwaysInline && !Callee->isTransparent())
return nullptr;
}
return Callee;
}
/// Returns true if the instruction \I has any interesting side effects which
/// might prevent inlining a pure function.
static bool hasInterestingSideEffect(SILInstruction *I) {
switch (I->getKind()) {
// Those instructions turn into no-ops after inlining, redundant load
// elimination, constant folding and dead-object elimination.
case swift::SILInstructionKind::StrongRetainInst:
case swift::SILInstructionKind::StrongReleaseInst:
case swift::SILInstructionKind::RetainValueInst:
case swift::SILInstructionKind::ReleaseValueInst:
case swift::SILInstructionKind::StoreInst:
case swift::SILInstructionKind::DeallocStackRefInst:
case swift::SILInstructionKind::DeallocRefInst:
return false;
default:
return I->getMemoryBehavior() != MemoryBehavior::None;
}
}
/// Returns true if the operand \p Arg is a constant or an object which is
/// initialized with constant values.
///
/// The value is considered to be constant if it is composed of side-effect free
/// instructions, like literal or aggregate instructions.
static bool isConstantArg(Operand *Arg) {
auto *ArgI = Arg->get()->getDefiningInstruction();
if (!ArgI)
return false;
SmallPtrSet<SILInstruction *, 8> Visited;
SmallVector<SILInstruction *, 8> Worklist;
auto addToWorklist = [&](SILInstruction *I) {
if (Visited.insert(I).second)
Worklist.push_back(I);
};
addToWorklist(ArgI);
// Visit the transitive closure of \p Arg and see if there is any side-effect
// instructions which prevents folding away everything after inlining.
while (!Worklist.empty()) {
SILInstruction *I = Worklist.pop_back_val();
if (hasInterestingSideEffect(I))
return false;
for (SILValue Result : I->getResults()) {
for (Operand *Use : Result->getUses()) {
if (Use != Arg)
addToWorklist(Use->getUser());
}
}
for (Operand &Op : I->getAllOperands()) {
if (SILInstruction *OpInst = Op.get()->getDefiningInstruction()) {
addToWorklist(OpInst);
} else {
return false;
}
}
}
return true;
}
bool swift::isPureCall(FullApplySite AI, BasicCalleeAnalysis *BCA) {
// If a call has only constant arguments and the call is pure, i.e. has
// no side effects, then we should always inline it.
// This includes arguments which are objects initialized with constant values.
if (BCA->getMemoryBehavior(AI, /*observeRetains*/ true) != MemoryBehavior::None)
return false;
// Check if all parameters are constant.
auto Args = AI.getArgumentOperands().slice(AI.getNumIndirectSILResults());
for (Operand &Arg : Args) {
if (!isConstantArg(&Arg)) {
return false;
}
}
return true;
}