-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathAssemblyVisionRemarkGenerator.cpp
878 lines (779 loc) · 31.1 KB
/
AssemblyVisionRemarkGenerator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
//===--- AssemblyVisionRemarkGenerator.cpp --------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// In this pass, we define the assembly-vision-remark-generator, a simple
/// SILVisitor that attempts to infer remarks for the user using heuristics.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-assembly-vision-remark-gen"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace swift::PatternMatch;
static llvm::cl::opt<bool> ForceVisitImplicitAutogeneratedFunctions(
"assemblyvisionremarkgen-visit-implicit-autogen-funcs", llvm::cl::Hidden,
llvm::cl::desc(
"Emit opt remarks even on implicit and autogenerated functions"),
llvm::cl::init(false));
static llvm::cl::opt<bool> DecllessDebugValueUseSILDebugInfo(
"assemblyvisionremarkgen-declless-debugvalue-use-sildebugvar-info",
llvm::cl::Hidden,
llvm::cl::desc(
"If a debug_value does not have a decl, infer a value with a name from "
"that info that has a loc set to the loc of the debug_value "
"instruction itself. This is for testing purposes so it is easier to "
"write SIL test cases for this pass"),
llvm::cl::init(false));
//===----------------------------------------------------------------------===//
// Value To Decl Inferrer
//===----------------------------------------------------------------------===//
namespace {
struct ValueToDeclInferrer {
using Argument = OptRemark::Argument;
using ArgumentKeyKind = OptRemark::ArgumentKeyKind;
SmallVector<std::pair<SILType, Projection>, 32> accessPath;
SmallVector<Operand *, 32> rcIdenticalSecondaryUseSearch;
RCIdentityFunctionInfo &rcfi;
ValueToDeclInferrer(RCIdentityFunctionInfo &rcfi) : rcfi(rcfi) {}
/// Given a value, attempt to infer a conservative list of decls that the
/// passed in value could be referring to. This is done just using heuristics
bool infer(ArgumentKeyKind keyKind, SILValue value,
SmallVectorImpl<Argument> &resultingInferredDecls,
bool allowSingleRefEltAddrPeek = false);
/// Print out a note to \p stream that beings at decl and then if
/// useProjectionPath is set to true iterates the accessPath we computed for
/// decl producing a segmented access path, e.x.: "of 'x.lhs.ivar'".
///
/// The reason why one may not want to emit a projection path note here is if
/// one found an debug_value on a value that is rc-identical to the actual
/// value associated with the current projection path. Consider the following
/// SIL:
///
/// struct KlassPair {
/// var lhs: Klass
/// var rhs: Klass
/// }
///
/// struct StateWithOwningPointer {
/// var state: TrivialState
/// var owningPtr: Klass
/// }
///
/// sil @theFunction : $@convention(thin) () -> () {
/// bb0:
/// %0 = apply %getKlassPair() : $@convention(thin) () -> @owned
/// KlassPair
/// // This debug_value's name can be combined...
/// debug_value %0 : $KlassPair, name "myPair"
/// // ... with the access path from the struct_extract here...
/// %1 = struct_extract %0 : $KlassPair, #KlassPair.lhs
/// // ... to emit a nice diagnostic that 'myPair.lhs' is being retained.
/// strong_retain %1 : $Klass
///
/// // In contrast in this case, we rely on looking through rc-identity
/// // uses to find the debug_value. In this case, the source info
/// // associated with the debug_value (%2) is no longer associated with
/// // the underlying access path we have been tracking upwards (%1 is in
/// // our access path list). Instead, we know that the debug_value is
/// // rc-identical to whatever value we were originally tracking up (%1)
/// // and thus the correct identifier to use is the direct name of the
/// // identifier alone since that source identifier must be some value
/// // in the source that by itself is rc-identical to whatever is being
/// // manipulated.
/// //
/// // The reason why we must do this is due to the behavior of the late
/// // optimizer and how it forms these patterns in the code.
/// %0a = apply %getStateWithOwningPointer() : $@convention(thin) () ->
/// @owned StateWithOwningPointer %1 = struct_extract %0a :
/// $StateWithOwningPointer, #StateWithOwningPointer.owningPtr
/// strong_retain %1 : $Klass
/// %2 = struct $Array(%0 : $Builtin.NativeObject, ...)
/// debug_value %2 : $Array, ...
/// }
void printNote(llvm::raw_string_ostream &stream, StringRef name,
bool shouldPrintAccessPath = true);
/// Convenience overload that calls:
///
/// printNote(stream, decl->getBaseName().userFacingName(),
/// shouldPrintAccessPath).
void printNote(llvm::raw_string_ostream &stream, const ValueDecl *decl,
bool shouldPrintAccessPath = true) {
printNote(stream, decl->getBaseName().userFacingName(),
shouldPrintAccessPath);
}
/// Print out non-destructively the current access path we have found to
/// stream.
void printAccessPath(llvm::raw_string_ostream &stream);
};
} // anonymous namespace
void ValueToDeclInferrer::printAccessPath(llvm::raw_string_ostream &stream) {
for (auto &pair : accessPath) {
auto baseType = pair.first;
auto &proj = pair.second;
stream << ".";
// WARNING: This must be kept insync with isSupportedProjection!
switch (proj.getKind()) {
case ProjectionKind::BlockStorageCast:
stream << "project_block_storage<" << proj.getCastType(baseType) << ">";
continue;
case ProjectionKind::Upcast:
stream << "upcast<" << proj.getCastType(baseType) << ">";
continue;
case ProjectionKind::RefCast:
stream << "refcast<" << proj.getCastType(baseType) << ">";
continue;
case ProjectionKind::BitwiseCast:
stream << "bitwise_cast<" << proj.getCastType(baseType) << ">";
continue;
case ProjectionKind::Struct:
case ProjectionKind::Class:
stream << proj.getVarDecl(baseType)->getBaseName();
continue;
case ProjectionKind::Tuple:
stream << proj.getIndex();
continue;
case ProjectionKind::Enum:
stream << proj.getEnumElementDecl(baseType)->getBaseName();
continue;
// Object -> Address projections can never be looked through unless they are
// from a class where we have special logic for it only happening a single
// time.
case ProjectionKind::Box:
case ProjectionKind::Index:
case ProjectionKind::TailElems:
llvm_unreachable(
"Object -> Address projection should never be looked through!");
}
llvm_unreachable("Covered switch is not covered?!");
}
}
void ValueToDeclInferrer::printNote(llvm::raw_string_ostream &stream,
StringRef name,
bool shouldPrintAccessPath) {
stream << "of '" << name;
if (shouldPrintAccessPath)
printAccessPath(stream);
stream << "'";
}
// WARNING: This must be kept insync with ValueToDeclInferrer::printNote(...).
static SingleValueInstruction *isSupportedProjection(Projection p, SILValue v) {
switch (p.getKind()) {
case ProjectionKind::Upcast:
case ProjectionKind::RefCast:
case ProjectionKind::BlockStorageCast:
case ProjectionKind::BitwiseCast:
case ProjectionKind::Struct:
case ProjectionKind::Tuple:
case ProjectionKind::Enum:
return cast<SingleValueInstruction>(v);
// Object -> Address projections can never be looked through.
case ProjectionKind::Class:
case ProjectionKind::Box:
case ProjectionKind::Index:
case ProjectionKind::TailElems:
return nullptr;
}
llvm_unreachable("Covered switch is not covered?!");
}
static bool hasNonInlinedDebugScope(SILInstruction *i) {
if (auto *scope = i->getDebugScope())
return !scope->InlinedCallSite;
return false;
}
namespace {
/// A helper struct that attempts to infer the decl associated with a value from
/// one of its uses. It does this by searching the def-use graph locally for
/// debug_value instructions.
struct ValueUseToDeclInferrer {
using Argument = ValueToDeclInferrer::Argument;
using ArgumentKeyKind = ValueToDeclInferrer::ArgumentKeyKind;
SmallPtrSet<swift::SILInstruction *, 8> visitedDebugValueInsts;
ValueToDeclInferrer &object;
ArgumentKeyKind keyKind;
SmallVectorImpl<Argument> &resultingInferredDecls;
bool findDecls(Operand *use, SILValue value);
};
} // anonymous namespace
bool ValueUseToDeclInferrer::findDecls(Operand *use, SILValue value) {
// Skip type dependent operands.
if (use->isTypeDependent())
return false;
// Then see if we have a debug_value that is associated with a non-inlined
// debug scope. Such an instruction is an instruction that is from the
// current function.
auto debugInst = DebugVarCarryingInst(use->getUser());
if (!debugInst)
return false;
LLVM_DEBUG(llvm::dbgs() << "Found DebugInst: " << **debugInst);
if (!hasNonInlinedDebugScope(*debugInst))
return false;
// See if we have already inferred this debug_value as a potential source
// for this instruction. In such a case, just return.
if (!visitedDebugValueInsts.insert(*debugInst).second)
return false;
if (auto *decl = debugInst.getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
// If we are not a top level use, we must be a rc-identical transitive
// use. In such a case, we just print out the rc identical value
// without a projection path. This is because we now have a better
// name and the name is rc-identical to whatever was at the end of the
// projection path but is not at the end of that projection path.
object.printNote(stream, decl,
use->get() == value /*print projection path*/);
}
resultingInferredDecls.emplace_back(
OptRemark::ArgumentKey{keyKind, "InferredValue"}, std::move(msg), decl);
return true;
}
// If we did not have a decl, see if we were asked for testing
// purposes to use SILDebugInfo to create a placeholder inferred
// value.
if (!DecllessDebugValueUseSILDebugInfo)
return false;
auto varInfo = debugInst.getVarInfo();
if (!varInfo)
return false;
auto name = varInfo->Name;
if (name.empty())
return false;
std::string msg;
{
llvm::raw_string_ostream stream(msg);
object.printNote(stream, name,
use->get() == value /*print projection path*/);
}
resultingInferredDecls.push_back(Argument(
{keyKind, "InferredValue"}, std::move(msg), debugInst->getLoc()));
return true;
}
bool ValueToDeclInferrer::infer(
ArgumentKeyKind keyKind, SILValue value,
SmallVectorImpl<Argument> &resultingInferredDecls,
bool allowSingleRefEltAddrPeek) {
// Clear the stored access path at end of scope.
SWIFT_DEFER { accessPath.clear(); };
ValueUseToDeclInferrer valueUseInferrer{
{}, *this, keyKind, resultingInferredDecls};
bool foundSingleRefElementAddr = false;
// This is a linear IR traversal using a 'falling while loop'. That means
// every time through the loop we are trying to handle a case before we hit
// the bottom of the while loop where we always return true (since we did not
// hit a could not compute case). Reassign value and continue to go to the
// next step.
LLVM_DEBUG(llvm::dbgs() << "Searching for decls!\n");
while (true) {
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *value);
// First check for "identified values" like arguments and global_addr.
if (auto *arg = dyn_cast<SILArgument>(value))
if (auto *decl = arg->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
if (auto *ga = dyn_cast<GlobalAddrInst>(value))
if (auto *decl = ga->getReferencedGlobal()->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
if (auto *ari = dyn_cast<AllocRefInst>(value)) {
if (auto *decl = ari->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
}
if (auto *abi = dyn_cast<AllocBoxInst>(value)) {
if (auto *decl = abi->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
}
// A pattern that we see around empty array storage is:
//
// %0 = global_addr @_swiftEmptyArrayStorage : $*_SwiftEmptyArrayStorage
// %1 = address_to_pointer %0 : $*_SwiftEmptyArrayStorage to
// $Builtin.RawPointer %2 = raw_pointer_to_ref %1 : $Builtin.RawPointer to
// $__EmptyArrayStorage
//
// Recognize this case.
{
GlobalAddrInst *gai;
if (match(value, m_RawPointerToRefInst(
m_AddressToPointerInst(m_GlobalAddrInst(gai))))) {
if (auto *decl = gai->getReferencedGlobal()->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
}
}
// We prefer decls not from uses since these are inherently noisier. Still,
// it is better than nothing.
bool foundDeclFromUse = false;
if (auto *asi = dyn_cast<AllocStackInst>(value)) {
if (auto *decl = asi->getDecl()) {
std::string msg;
{
llvm::raw_string_ostream stream(msg);
printNote(stream, decl);
}
resultingInferredDecls.push_back(
Argument({keyKind, "InferredValue"}, std::move(msg), decl));
return true;
}
// See if we have a single init alloc_stack and can infer a
// debug_value from that.
LLVM_DEBUG(llvm::dbgs() << "Checking for single init use!\n");
if (auto *initUse = getSingleInitAllocStackUse(asi)) {
LLVM_DEBUG(llvm::dbgs() << "Found one: " << *initUse->getUser());
if (auto *si = dyn_cast<StoreInst>(initUse->getUser())) {
for (auto *use : si->getSrc()->getUses()) {
foundDeclFromUse |= valueUseInferrer.findDecls(use, value);
}
}
if (auto *cai = dyn_cast<CopyAddrInst>(initUse->getUser())) {
for (auto *use : cai->getSrc()->getUses()) {
foundDeclFromUse |= valueUseInferrer.findDecls(use, value);
}
}
}
}
// Then visit our users (ignoring rc identical transformations) and see if
// we can find a debug_value that provides us with a decl we can use to
// construct an argument.
//
// The reason why we do this is that sometimes we reform a struct from its
// constituent parts and then construct the debug_value from that. For
// instance, if we FSOed.
rcfi.visitRCUses(value, [&](Operand *use) {
foundDeclFromUse |= valueUseInferrer.findDecls(use, value);
});
for (Operand *use : value->getUses()) {
if (auto *eir = dyn_cast<EndInitLetRefInst>(use->getUser())) {
rcfi.visitRCUses(eir, [&](Operand *use) {
foundDeclFromUse |= valueUseInferrer.findDecls(use, value);
});
}
}
// At this point, we could not infer any argument. See if we can look up the
// def-use graph and come up with a good location after looking through
// loads and projections.
if (auto *li = dyn_cast<LoadInst>(value)) {
value = stripAccessMarkers(li->getOperand());
continue;
}
if (auto proj = Projection(value)) {
if (auto *projInst = isSupportedProjection(proj, value)) {
value = projInst->getOperand(0);
accessPath.emplace_back(value->getType(), proj);
continue;
}
// Check if we had a ref_element_addr and our caller said that they were
// ok with skipping a single one.
//
// Examples of users: begin_access, end_access.
if (allowSingleRefEltAddrPeek &&
proj.getKind() == ProjectionKind::Class) {
if (!foundSingleRefElementAddr) {
value = cast<RefElementAddrInst>(value)->getOperand();
accessPath.emplace_back(value->getType(), proj);
foundSingleRefElementAddr = true;
continue;
}
}
}
// TODO: We could emit at this point a msg for temporary allocations.
// If we reached this point, we finished falling through the loop and return
// if we found any decls from uses. We always process everything so we /can/
// potentially emit multiple diagnostics.
return foundDeclFromUse;
}
}
//===----------------------------------------------------------------------===//
// Opt Remark Generator Visitor
//===----------------------------------------------------------------------===//
namespace {
struct AssemblyVisionRemarkGeneratorInstructionVisitor
: public SILInstructionVisitor<
AssemblyVisionRemarkGeneratorInstructionVisitor> {
SILModule &mod;
OptRemark::Emitter ORE;
/// A class that we use to infer the decl that is associated with a
/// miscellaneous SIL value. This is just a heuristic that is to taste.
ValueToDeclInferrer valueToDeclInferrer;
AssemblyVisionRemarkGeneratorInstructionVisitor(SILFunction &fn,
RCIdentityFunctionInfo &rcfi)
: mod(fn.getModule()), ORE(DEBUG_TYPE, fn), valueToDeclInferrer(rcfi) {}
void visitStrongRetainInst(StrongRetainInst *sri);
void visitStrongReleaseInst(StrongReleaseInst *sri);
void visitRetainValueInst(RetainValueInst *rvi);
void visitReleaseValueInst(ReleaseValueInst *rvi);
void visitAllocRefInstBase(AllocRefInstBase *ari);
void visitAllocRefInst(AllocRefInst *ari);
void visitAllocRefDynamicInst(AllocRefDynamicInst *ari);
void visitAllocBoxInst(AllocBoxInst *abi);
void visitSILInstruction(SILInstruction *) {}
void visitBeginAccessInst(BeginAccessInst *bai);
void visitEndAccessInst(EndAccessInst *eai);
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *ccabi);
void visitUnconditionalCheckedCastAddrInst(
UnconditionalCheckedCastAddrInst *uccai);
};
} // anonymous namespace
void AssemblyVisionRemarkGeneratorInstructionVisitor::
visitUnconditionalCheckedCastAddrInst(
UnconditionalCheckedCastAddrInst *uccai) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(
ArgumentKeyKind::Note, uccai->getSrc(), inferredArgs,
true /*allow single ref elt peek*/);
(void)foundArgs;
// Use the actual source loc of the
auto remark = RemarkMissed("memory", *uccai)
<< "unconditional runtime cast of value with type '"
<< NV("ValueType", uccai->getSrc()->getType()) << "' to '"
<< NV("CastType", uccai->getDest()->getType()) << "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::
visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *ccabi) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(
ArgumentKeyKind::Note, ccabi->getSrc(), inferredArgs,
true /*allow single ref elt peek*/);
(void)foundArgs;
// Use the actual source loc of the
auto remark = RemarkMissed("memory", *ccabi)
<< "conditional runtime cast of value with type '"
<< NV("ValueType", ccabi->getSrc()->getType()) << "' to '"
<< NV("CastType", ccabi->getDest()->getType()) << "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitBeginAccessInst(
BeginAccessInst *bai) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(
ArgumentKeyKind::Note, bai->getOperand(), inferredArgs,
true /*allow single ref elt peek*/);
(void)foundArgs;
// Use the actual source loc of the
auto remark =
RemarkMissed("memory", *bai, SourceLocInferenceBehavior::ForwardScan)
<< "begin exclusive access to value of type '"
<< NV("ValueType", bai->getOperand()->getType()) << "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitEndAccessInst(
EndAccessInst *eai) {
ORE.emit([&]() {
using namespace OptRemark;
auto *bai = cast<BeginAccessInst>(eai->getOperand());
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(
ArgumentKeyKind::Note, bai->getOperand(), inferredArgs,
true /*allow single ref elt peek*/);
(void)foundArgs;
// Use the actual source loc of the begin_access if it works. Otherwise,
// scan backwards.
auto remark =
RemarkMissed("memory", *eai,
SourceLocInferenceBehavior::BackwardThenForwardAlwaysInfer,
SourceLocPresentationKind::EndRange)
<< "end exclusive access to value of type '"
<< NV("ValueType", eai->getOperand()->getType()) << "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitStrongRetainInst(
StrongRetainInst *sri) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(ArgumentKeyKind::Note,
sri->getOperand(), inferredArgs);
(void)foundArgs;
// Retains begin a lifetime scope so we infer scan forward.
auto remark =
RemarkMissed("memory", *sri,
SourceLocInferenceBehavior::ForwardScanAlwaysInfer)
<< "retain of type '" << NV("ValueType", sri->getOperand()->getType())
<< "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitStrongReleaseInst(
StrongReleaseInst *sri) {
ORE.emit([&]() {
using namespace OptRemark;
// Releases end a lifetime scope so we infer scan backward.
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(ArgumentKeyKind::Note,
sri->getOperand(), inferredArgs);
(void)foundArgs;
auto remark =
RemarkMissed("memory", *sri,
SourceLocInferenceBehavior::BackwardThenForwardAlwaysInfer,
SourceLocPresentationKind::EndRange)
<< "release of type '" << NV("ValueType", sri->getOperand()->getType())
<< "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitRetainValueInst(
RetainValueInst *rvi) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(ArgumentKeyKind::Note,
rvi->getOperand(), inferredArgs);
(void)foundArgs;
// Retains begin a lifetime scope, so we infer scan forwards.
auto remark =
RemarkMissed("memory", *rvi,
SourceLocInferenceBehavior::ForwardScanAlwaysInfer)
<< "retain of type '" << NV("ValueType", rvi->getOperand()->getType())
<< "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitReleaseValueInst(
ReleaseValueInst *rvi) {
ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs = valueToDeclInferrer.infer(ArgumentKeyKind::Note,
rvi->getOperand(), inferredArgs);
(void)foundArgs;
// Releases end a lifetime scope so we infer scan backward.
auto remark =
RemarkMissed("memory", *rvi,
SourceLocInferenceBehavior::BackwardThenForwardAlwaysInfer)
<< "release of type '" << NV("ValueType", rvi->getOperand()->getType())
<< "'";
for (auto arg : inferredArgs) {
remark << arg;
}
return remark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitAllocRefInstBase(
AllocRefInstBase *ari) {
if (ari->canAllocOnStack()) {
return ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs =
valueToDeclInferrer.infer(ArgumentKeyKind::Note, ari, inferredArgs);
(void)foundArgs;
auto resultRemark =
RemarkPassed("memory", *ari, SourceLocInferenceBehavior::ForwardScan)
<< "stack allocated ref of type '" << NV("ValueType", ari->getType())
<< "'";
for (auto &arg : inferredArgs)
resultRemark << arg;
return resultRemark;
});
}
return ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs =
valueToDeclInferrer.infer(ArgumentKeyKind::Note, ari, inferredArgs);
(void)foundArgs;
auto resultRemark =
RemarkMissed("memory", *ari, SourceLocInferenceBehavior::ForwardScan)
<< "heap allocated ref of type '" << NV("ValueType", ari->getType())
<< "'";
for (auto &arg : inferredArgs)
resultRemark << arg;
return resultRemark;
});
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitAllocRefInst(
AllocRefInst *ari) {
visitAllocRefInstBase(ari);
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitAllocRefDynamicInst(
AllocRefDynamicInst *ari) {
visitAllocRefInstBase(ari);
}
void AssemblyVisionRemarkGeneratorInstructionVisitor::visitAllocBoxInst(
AllocBoxInst *abi) {
return ORE.emit([&]() {
using namespace OptRemark;
SmallVector<Argument, 8> inferredArgs;
bool foundArgs =
valueToDeclInferrer.infer(ArgumentKeyKind::Note, abi, inferredArgs);
(void)foundArgs;
auto resultRemark =
RemarkMissed("memory", *abi, SourceLocInferenceBehavior::ForwardScan)
<< "heap allocated box of type '" << NV("ValueType", abi->getType())
<< "'";
for (auto &arg : inferredArgs)
resultRemark << arg;
return resultRemark;
});
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
class AssemblyVisionRemarkGenerator : public SILFunctionTransform {
~AssemblyVisionRemarkGenerator() override {}
bool isOptRemarksEnabled() {
auto *fn = getFunction();
// TODO: Put this on LangOpts as a helper.
auto &langOpts = fn->getASTContext().LangOpts;
// If we are supposed to emit remarks, always emit.
if (bool(langOpts.OptimizationRemarkMissedPattern) ||
bool(langOpts.OptimizationRemarkPassedPattern) ||
fn->getModule().getSILRemarkStreamer())
return true;
// Otherwise, first check if our function has a force emit opt remark prefix
// semantics tag.
if (fn->hasSemanticsAttrThatStartsWith(
semantics::FORCE_EMIT_OPT_REMARK_PREFIX))
return true;
// Otherwise, check if we have a self parameter that is a nominal type that
// is marked with the @_assemblyVision attribute.
if (fn->hasSelfParam()) {
if (auto *nomType = fn->getSelfArgument()
->getType()
.getNominalOrBoundGenericNominal()) {
LLVM_DEBUG(llvm::dbgs() << "Checking for remark on: "
<< nomType->getName().get() << "\n");
if (nomType->shouldEmitAssemblyVisionRemarksOnMethods()) {
LLVM_DEBUG(llvm::dbgs() << "Success! Will emit remarks!!\n");
return true;
}
LLVM_DEBUG(llvm::dbgs() << "Fail! No remarks will be emitted!!\n");
}
}
return false;
}
/// The entry point to the transformation.
void run() override {
if (!isOptRemarksEnabled())
return;
auto *fn = getFunction();
// Skip top level implicit functions and top level autogenerated functions,
// unless we were asked by the user to emit them.
if (!ForceVisitImplicitAutogeneratedFunctions) {
// Skip implicit functions generated by Sema.
if (auto *ctx = fn->getDeclContext()) {
if (auto *decl = ctx->getAsDecl()) {
if (decl->isImplicit()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping implicit decl function: "
<< fn->getName() << "\n");
return;
}
}
}
// Skip autogenerated functions generated by SILGen.
if (auto loc = fn->getDebugScope()->getLoc()) {
if (loc.isAutoGenerated()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping autogenerated function: "
<< fn->getName() << "\n");
return;
}
}
}
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << fn->getName() << "\n");
auto &rcfi = *getAnalysis<RCIdentityAnalysis>()->get(fn);
AssemblyVisionRemarkGeneratorInstructionVisitor visitor(*fn, rcfi);
for (auto &block : *fn) {
for (auto &inst : block) {
visitor.visit(&inst);
}
}
}
};
} // end anonymous namespace
SILTransform *swift::createAssemblyVisionRemarkGenerator() {
return new AssemblyVisionRemarkGenerator();
}