-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathARCCodeMotion.cpp
1287 lines (1116 loc) · 47.1 KB
/
ARCCodeMotion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ARCCodeMotion.cpp - SIL ARC Code Motion --------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This pass moves retains down and releases up. This, hopefully, will help
/// ARC sequence opt to remove retain and release pairs without worrying too
/// much about control flows.
///
/// It uses an optimistic iterative data flow to compute where to insert the
/// retains and releases for every reference-counted root. It then removes all
/// the old retain and release instructions and create the new ones.
///
/// This pass is more sophisticated than SILCodeMotion, as arc optimizations
/// can be very beneficial, use an optimistic global data flow to achieve
/// optimality.
///
/// Proof of Correctness:
/// -------------------
///
/// 1. Retains are blocked by MayDecrements. Its straightforward to prove that
/// retain sinking is correct.
///
/// If a retain is sunk from Region A to Region B, that means there is no
/// blocking operation between where the retain was in Region A to where it is
/// sunk to in Region B. Since we only sink retains (we do not move any other
/// instructions) which themselves are NOT MayDecrement operations, and moving
/// retains can't turn non-decrement instruction MayDecrement.
///
/// 2. Releases are blocked by MayInterfere. If a release is hoisted from
/// Region B to Region A, that means there is no blocking operation from where
/// the release was in Region B and where the release is hoisted to in Region A.
///
/// The question is whether we can introduce such operation while we hoist
/// other releases. The answer is NO. because if such releases exist, they
/// would be blocked by the old release (we remove old release and recreate new
/// ones at the end of the pass) and will not be able to be hoisted beyond the
/// old release.
///
/// This proof also hinges on the fact that if release A interferes with
/// releases B then release B must interfere with release A. i.e. the 2
/// releases must have the symmetric property. Consider the 2 releases as 2
/// function calls, i.e. CallA (release A) and CallB (release B), if CallA
/// interferes with CallB, that means CallA must share some program states
/// (through read or write) with CallB. Then it is not possible for CallB
/// to not share any states with CallA. And if they do share states, then
/// its not possible for CallB to block CallA and CallA not to block CallB.
///
/// TODO: Sinking retains can block releases to be hoisted, and hoisting
/// releases can block retains to be sunk. Investigate when to sink retains and
/// when to hoist releases and their ordering in the pass pipeline.
///
/// TODO: Consider doing retain hoisting and release sinking. This can help
/// to discover disjoint lifetimes and we can try to stitch them together.
///
/// TODO: There are a lot of code duplications between retain and release code
/// motion in the data flow part. Consider whether we can share them.
/// Essentially, we can implement the release code motion by inverting the
/// retain code motion, but this can also make the code less readable.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-rr-code-motion"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/Strings.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumRetainsSunk, "Number of retains sunk");
STATISTIC(NumReleasesHoisted, "Number of releases hoisted");
llvm::cl::opt<bool> DisableARCCodeMotion("disable-arc-cm", llvm::cl::init(false));
//===----------------------------------------------------------------------===//
// Block State
//===----------------------------------------------------------------------===//
struct BlockState {
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault.
///
/// NOTE: we could do the data flow with BBSetIn or BBSetOut, but that would
/// require us to create a temporary copy to check whether the BBSet has
/// changed after the genset and killset has been applied.
SmallBitVector BBSetIn;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault.
SmallBitVector BBSetOut;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If the bit is set, that means this basic block creates a
/// retain which can be sunk or a release which can be hoisted.
SmallBitVector BBGenSet;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If this bit is set, that means this basic block stops retain
/// or release of the refcounted root to be moved across.
SmallBitVector BBKillSet;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If this bit is set, that means this is potentially a retain
/// or release that can be sunk or hoisted to this point. This is used to
/// optimize the time for computing genset and killset.
///
/// NOTE: this vector contains an approximation of whether there will be a
/// retain or release to a certain point of a basic block.
SmallBitVector BBMaxSet;
};
/// CodeMotionContext - This is the base class which retain code motion and
/// release code motion inherits from. It defines an interface as to how the
/// code motion procedure should be.
class CodeMotionContext {
protected:
SILFunctionTransform *parentTransform;
/// Dataflow needs multiple iteration to converge. If this is false, then we
/// do not need to generate the genset or killset, i.e. we can simply do 1
/// pessimistic data flow iteration.
bool MultiIteration;
/// The allocator we are currently using.
llvm::SpecificBumpPtrAllocator<BlockState> &BPA;
/// Current function we are analyzing.
SILFunction *F;
/// Current post-order we are using.
PostOrderFunctionInfo *PO;
/// Current alias analysis we are using.
AliasAnalysis *AA;
/// Current rc-identity we are using.
RCIdentityFunctionInfo *RCFI;
/// All the unique refcount roots retained or released in the function.
llvm::SmallVector<SILValue, 16> RCRootVault;
/// Contains a map between RC roots to their index in the RCRootVault.
/// used to facilitate fast RC roots to index lookup.
llvm::DenseMap<SILValue, unsigned> RCRootIndex;
/// All the retains or releases originally in the function. Eventually
/// they will all be removed after all the new ones are generated.
llvm::SmallPtrSet<SILInstruction *, 8> RCInstructions;
/// All the places to place the new retains or releases after code motion.
using InsertPointList = llvm::SmallVector<SILInstruction *, 2>;
llvm::SmallDenseMap<SILValue, InsertPointList> InsertPoints;
/// These are the blocks that have an RC instruction to process or it blocks
/// some RC instructions. If the basic block has neither, we do not need to
/// process the block again in the last iteration. We populate this set when
/// we compute the genset and killset.
BasicBlockSet InterestBlocks;
#ifndef NDEBUG
// SILPrintContext is used to print block IDs in RPO order.
// It is optional so only the final insertion point interference is printed.
std::optional<SILPrintContext> printCtx;
#endif
/// Return the rc-identity root of the SILValue.
SILValue getRCRoot(SILValue R) {
return RCFI->getRCIdentityRoot(R);
}
/// Return the rc-identity root of the RC instruction, i.e.
/// retain or release.
SILValue getRCRoot(SILInstruction *I) {
assert(isRetainInstruction(I) || isReleaseInstruction(I) &&
"Extracting RC root from invalid instruction");
return getRCRoot(I->getOperand(0));
}
public:
/// Constructor.
CodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F,
PostOrderFunctionInfo *PO, AliasAnalysis *AA,
RCIdentityFunctionInfo *RCFI)
: parentTransform(parentTransform),
MultiIteration(true), BPA(BPA), F(F), PO(PO), AA(AA), RCFI(RCFI),
InterestBlocks(F) {}
/// virtual destructor.
virtual ~CodeMotionContext() {}
/// Run the data flow to move retains and releases.
bool run();
/// Check whether we need to run an optimistic iteration data flow.
/// or a pessimistic would suffice.
virtual bool requireIteration() = 0;
/// Initialize necessary things to run the iterative data flow.
virtual void initializeCodeMotionDataFlow() = 0;
/// Initialize the basic block maximum refcounted set.
virtual void initializeCodeMotionBBMaxSet() = 0;
/// Compute the genset and killset for every root in every basic block.
virtual void computeCodeMotionGenKillSet() = 0;
/// Run the iterative data flow to converge.
virtual void convergeCodeMotionDataFlow() = 0;
/// Use the data flow results, come up with places to insert the new inst.
virtual void computeCodeMotionInsertPoints() = 0;
/// Remove the old retains and create the new *moved* refcounted instructions
virtual bool performCodeMotion() = 0;
/// Merge the data flow states.
virtual void mergeBBDataFlowStates(SILBasicBlock *BB) = 0;
/// Compute the BBSetIn and BBSetOut for the current basic
/// block with the generated gen and kill set.
virtual bool processBBWithGenKillSet(SILBasicBlock *BB) = 0;
/// Return true if the instruction blocks the Ptr to be moved further.
virtual bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) = 0;
};
bool CodeMotionContext::run() {
MultiIteration = requireIteration();
// Initialize the data flow.
initializeCodeMotionDataFlow();
if (RCRootVault.size() > 500) {
// Emergency exit to avoid bad compile time problems in rare corner cases.
// This limit is more than enough for "real world" code.
// Even large functions have < 100 locations.
// But in some corner cases - especially in generated code - we can run
// into quadratic complexity for large functions.
// TODO: eventually the ARCCodeMotion passes will be replaced by OSSA
// optimizations which shouldn't have this problem.
return false;
}
// Converge the BBSetOut with iterative data flow.
if (MultiIteration) {
initializeCodeMotionBBMaxSet();
computeCodeMotionGenKillSet();
convergeCodeMotionDataFlow();
}
// Compute the insertion point where each RC root can be moved to.
computeCodeMotionInsertPoints();
// Finally, generate new retains and remove the old retains.
return performCodeMotion();
}
//===----------------------------------------------------------------------===//
// Retain Code Motion
//===----------------------------------------------------------------------===//
class RetainBlockState : public BlockState {
public:
/// Check whether the BBSetOut has changed. If it does, we need to rerun
/// the data flow on this block's successors to reach fixed point.
bool updateBBSetOut(SmallBitVector &X) {
if (BBSetOut == X)
return false;
BBSetOut = X;
return true;
}
void init(bool IsEntry, unsigned size, bool MultiIteration) {
// Iterative forward data flow.
BBSetIn.resize(size, false);
// Initialize to true if we are running optimistic data flow, i.e.
// MultiIteration is true.
BBSetOut.resize(size, MultiIteration);
BBMaxSet.resize(size, !IsEntry && MultiIteration);
// Genset and Killset are initially empty.
BBGenSet.resize(size, false);
BBKillSet.resize(size, false);
}
};
/// RetainCodeMotionContext - Context to perform retain code motion.
class RetainCodeMotionContext : public CodeMotionContext {
/// All the retain block state for all the basic blocks in the function.
BasicBlockData<RetainBlockState> BlockStates;
InstructionSet retainInstructions;
ProgramTerminationFunctionInfo PTFI;
bool isRetain(SILInstruction *inst) const {
return retainInstructions.contains(inst);
}
/// Return true if the instruction blocks the Ptr to be moved further.
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
// NOTE: If more checks are to be added, place the most expensive in the
// end, this function is called many times.
//
// These terminator instructions block.
if (isa<ReturnInst>(II) || isa<ThrowInst>(II) || isa<ThrowAddrInst>(II) ||
isa<UnwindInst>(II) || isa<UnreachableInst>(II))
return true;
// Identical RC root blocks code motion, we will be able to move this retain
// further once we move the blocking retain.
if (isRetain(II) && getRCRoot(II) == Ptr) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at matching retain " << *II);
return true;
}
// Ref count checks do not have side effects, but are barriers for retains.
if (mayCheckRefCount(II)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at refcount check " << *II);
return true;
}
// mayDecrement reference count stops code motion.
if (mayDecrementRefCount(II, Ptr, AA)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at may decrement " << *II);
return true;
}
// This instruction does not block the retain code motion.
return false;
}
/// Return the previous instruction if it happens to be a retain with the
/// given RC root, nullptr otherwise.
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
if (&*I->getParent()->begin() == I)
return nullptr;
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
if (isRetain(Prev) && getRCRoot(Prev) == Root)
return Prev;
return nullptr;
}
public:
/// Constructor.
RetainCodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F, PostOrderFunctionInfo *PO,
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI)
: CodeMotionContext(parentTransform, BPA, F, PO, AA, RCFI),
BlockStates(F), retainInstructions(F), PTFI(F) {}
/// virtual destructor.
~RetainCodeMotionContext() override {}
/// Return true if we do not need optimistic data flow.
bool requireIteration() override;
/// Initialize necessary things to run the iterative data flow.
void initializeCodeMotionDataFlow() override;
/// Initialize the basic block maximum refcounted set.
void initializeCodeMotionBBMaxSet() override;
/// Compute the genset and killset for every root in every basic block.
void computeCodeMotionGenKillSet() override;
/// Run the iterative data flow to converge.
void convergeCodeMotionDataFlow() override;
/// Use the data flow results, come up with places to insert the new inst.
void computeCodeMotionInsertPoints() override;
/// Remove the old retains and create the new *moved* refcounted instructions
bool performCodeMotion() override;
/// Compute the BBSetIn and BBSetOut for the current basic block with the
/// generated gen and kill set.
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
/// Merge the data flow states.
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
};
bool RetainCodeMotionContext::requireIteration() {
// If all basic blocks will have their predecessors processed if the basic
// blocks in the functions are iterated in reverse post order. Then this
// function can be processed in one iteration, i.e. no need to generate the
// genset and killset.
BasicBlockSet PBBs(BlockStates.getFunction());
for (SILBasicBlock *B : PO->getReversePostOrder()) {
for (auto X : B->getPredecessorBlocks()) {
if (!PBBs.contains(X))
return true;
}
PBBs.insert(B);
}
return false;
}
void RetainCodeMotionContext::initializeCodeMotionDataFlow() {
// Find all the RC roots in the function.
for (auto &BB : *F) {
for (auto &II : BB) {
if (!isRetainInstruction(&II))
continue;
if (!parentTransform->continueWithNextSubpassRun(&II))
continue;
retainInstructions.insert(&II);
RCInstructions.insert(&II);
SILValue Root = getRCRoot(&II);
if (RCRootIndex.find(Root) != RCRootIndex.end())
continue;
RCRootIndex[Root] = RCRootVault.size();
RCRootVault.push_back(Root);
LLVM_DEBUG(llvm::dbgs()
<< "Retain Root #" << RCRootVault.size() << " " << Root);
}
}
// Initialize all the data flow bit vector for all basic blocks.
for (auto bd : BlockStates) {
bd.data.init(&bd.block == F->getEntryBlock(), RCRootVault.size(),
MultiIteration);
}
}
void RetainCodeMotionContext::initializeCodeMotionBBMaxSet() {
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
// If basic block has no predecessor, do nothing.
BlockState &State = BlockStates[BB];
if (BB->pred_empty()) {
State.BBMaxSet.reset();
} else {
// Intersect in all predecessors' BBSetOut.
State.BBMaxSet.set();
for (auto E = BB->pred_end(), I = BB->pred_begin(); I != E; ++I) {
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
}
}
// Process the instructions in the basic block to find what refcounted
// roots are retained. If we know that an RC root can't be retained at a
// basic block, then we know we do not need to consider it for the killset.
// NOTE: this is a conservative approximation, because some retains may be
// blocked before it reaches this block.
for (auto &II : *BB) {
if (!isRetain(&II))
continue;
State.BBMaxSet.set(RCRootIndex[getRCRoot(&II)]);
}
}
}
void RetainCodeMotionContext::computeCodeMotionGenKillSet() {
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
BlockState &State = BlockStates[BB];
bool InterestBlock = false;
for (auto &I : *BB) {
// Check whether this instruction blocks any RC root code motion.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&I, RCRootVault[i]))
continue;
// This is a blocking instruction for the rcroot.
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// If this is a retain instruction, it also generates.
if (isRetain(&I)) {
unsigned idx = RCRootIndex[getRCRoot(&I)];
State.BBGenSet.set(idx);
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
State.BBKillSet.reset(idx);
InterestBlock = true;
}
}
// Is this a block that is interesting to the last iteration of the data
// flow.
if (!InterestBlock)
continue;
InterestBlocks.insert(BB);
}
}
bool RetainCodeMotionContext::performCodeMotion() {
bool Changed = false;
// Create the new retain instructions.
for (auto RC : RCRootVault) {
auto Iter = InsertPoints.find(RC);
if (Iter == InsertPoints.end())
continue;
for (auto IP : Iter->second) {
// Check if the insertion point is in a block that we had previously
// identified as a program termination point. In such a case, we know that
// there are no releases or anything beyond a fatalError call. In such a
// case, do not insert the retain. It is ok if we leak.
if (PTFI.isProgramTerminatingBlock(IP->getParent()))
continue;
// We are about to insert a new retain instruction before the insertion
// point. Check if the previous instruction is reusable, reuse it, do not
// insert new instruction and delete old one.
if (auto I = getPrevReusableInst(IP, Iter->first)) {
RCInstructions.erase(I);
continue;
}
createIncrementBefore(Iter->first, IP);
Changed = true;
}
}
// Remove the old retain instructions.
for (auto R : RCInstructions) {
++NumRetainsSunk;
recursivelyDeleteTriviallyDeadInstructions(R, true);
}
return Changed;
}
void RetainCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
BlockState &State = BlockStates[BB];
State.BBSetIn.reset();
// If basic block has no predecessor, simply reset and return.
if (BB->pred_empty())
return;
// Intersect in all predecessors' BBSetOuts.
auto Iter = BB->pred_begin();
State.BBSetIn = BlockStates[*Iter].BBSetOut;
Iter = std::next(Iter);
for (auto E = BB->pred_end(); Iter != E; ++Iter) {
State.BBSetIn &= BlockStates[*Iter].BBSetOut;
}
}
bool RetainCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
RetainBlockState &State = BlockStates[BB];
// Compute the BBSetOut at the end of the basic block.
mergeBBDataFlowStates(BB);
// Compute the BBSetIn at the beginning of the basic block.
State.BBSetIn.reset(State.BBKillSet);
State.BBSetIn |= State.BBGenSet;
// If BBSetIn changes, then keep iterating until reached a fixed point.
return State.updateBBSetOut(State.BBSetIn);
}
void RetainCodeMotionContext::convergeCodeMotionDataFlow() {
// Process each basic block with the genset and killset. Every time the
// BBSetOut of a basic block changes, the optimization is rerun on its
// successors.
BasicBlockWorklist WorkList(BlockStates.getFunction());
// Push into reverse post order so that we can pop from the back and get
// post order.
for (SILBasicBlock *B : PO->getReversePostOrder()) {
WorkList.push(B);
}
while (SILBasicBlock *BB = WorkList.popAndForget()) {
if (processBBWithGenKillSet(BB)) {
for (SILBasicBlock *succ : BB->getSuccessors()) {
WorkList.pushIfNotVisited(succ);
}
}
}
}
void RetainCodeMotionContext::computeCodeMotionInsertPoints() {
#ifndef NDEBUG
printCtx.emplace(llvm::dbgs(), /*Verbose=*/false, /*Sorted=*/true);
#endif
// The BBSetOuts have converged, run last iteration and figure out
// insertion point for each refcounted root.
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
mergeBBDataFlowStates(BB);
RetainBlockState &S = BlockStates[BB];
// Compute insertion point generated by the edge value transition.
// If there is a transition from 1 to 0, that means we have a partial
// merge, which means the retain can NOT be sunk to the current block,
// so place it at the end of the predecessors.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (S.BBSetIn[i])
continue;
for (auto Pred : BB->getPredecessorBlocks()) {
BlockState &PBB = BlockStates[Pred];
if (!PBB.BBSetOut[i])
continue;
InsertPoints[RCRootVault[i]].push_back(Pred->getTerminator());
}
}
// Is this block interesting. If we are sure this block does not generate
// retains nor does it block any retains (i.e. no insertion point will be
// created), we can skip it, as the BBSetOut has been converged if this is
// a multi-iteration function.
if (MultiIteration && !InterestBlocks.contains(BB))
continue;
// Compute insertion point within the basic block. Process instructions in
// the basic block in reverse post-order fashion.
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!S.BBSetIn[i] || !mayBlockCodeMotion(&*I, RCRootVault[i]))
continue;
S.BBSetIn.reset(i);
InsertPoints[RCRootVault[i]].push_back(&*I);
}
// If this is a retain instruction, it also generates.
if (isRetain(&*I)) {
S.BBSetIn.set(RCRootIndex[getRCRoot(&*I)]);
}
}
// Lastly update the BBSetOut, only necessary when we are running a single
// iteration dataflow.
if (!MultiIteration) {
S.updateBBSetOut(S.BBSetIn);
}
}
}
//===----------------------------------------------------------------------===//
// Release Code Motion
//===----------------------------------------------------------------------===//
class ReleaseBlockState : public BlockState {
public:
/// Check whether the BBSetIn has changed. If it does, we need to rerun
/// the data flow on this block's predecessors to reach fixed point.
bool updateBBSetIn(SmallBitVector &X) {
if (BBSetIn == X)
return false;
BBSetIn = X;
return true;
}
/// If \p InitOptimistic is true, the block in-bits are initialized to 1
/// which enables optimistic data flow evaluation.
void init(bool InitOptimistic, unsigned size) {
// backward data flow.
// Initialize to true if we are running optimistic data flow, i.e.
// MultiIteration is true.
BBSetIn.resize(size, InitOptimistic);
BBSetOut.resize(size, false);
BBMaxSet.resize(size, InitOptimistic);
// Genset and Killset are initially empty.
BBGenSet.resize(size, false);
BBKillSet.resize(size, false);
}
};
/// ReleaseCodeMotionContext - Context to perform release code motion.
class ReleaseCodeMotionContext : public CodeMotionContext {
/// All the release block state for all the basic blocks in the function.
BasicBlockData<ReleaseBlockState> BlockStates;
InstructionSet releaseInstructions;
/// We are not moving epilogue releases.
bool FreezeEpilogueReleases;
/// The epilogue release matcher we are currently using.
ConsumedArgToEpilogueReleaseMatcher &ERM;
bool isRelease(SILInstruction *inst) const {
return releaseInstructions.contains(inst);
}
/// Return true if the instruction blocks the Ptr to be moved further.
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
// NOTE: If more checks are to be added, place the most expensive in the end.
// This function is called many times.
//
// We can not move a release above the instruction that defines the
// released value.
if (II == Ptr->getDefiningInstruction())
return true;
// Identical RC root blocks code motion, we will be able to move this release
// further once we move the blocking release.
if (isRelease(II) && getRCRoot(II) == Ptr) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Release " << Ptr << " at matching release " << *II);
return true;
}
// Stop at may interfere.
if (mayHaveSymmetricInterference(II, Ptr, AA)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Release " << Ptr << " at interference " << *II);
return true;
}
// This instruction does not block the release.
return false;
}
/// Return the successor instruction if it happens to be a release with the
/// given RC root, nullptr otherwise.
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
if (&*I->getParent()->begin() == I)
return nullptr;
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
if (isRelease(Prev) && getRCRoot(Prev) == Root)
return Prev;
return nullptr;
}
public:
/// Constructor.
ReleaseCodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F, PostOrderFunctionInfo *PO,
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI,
bool FreezeEpilogueReleases,
ConsumedArgToEpilogueReleaseMatcher &ERM)
: CodeMotionContext(parentTransform, BPA, F, PO, AA, RCFI),
BlockStates(F),
releaseInstructions(F),
FreezeEpilogueReleases(FreezeEpilogueReleases), ERM(ERM) {}
/// virtual destructor.
~ReleaseCodeMotionContext() override {}
/// Return true if the data flow can converge in 1 iteration.
bool requireIteration() override;
/// Initialize necessary things to run the iterative data flow.
void initializeCodeMotionDataFlow() override;
/// Initialize the basic block maximum refcounted set.
void initializeCodeMotionBBMaxSet() override;
/// Compute the genset and killset for every root in every basic block.
void computeCodeMotionGenKillSet() override;
/// Run the iterative data flow to converge.
void convergeCodeMotionDataFlow() override;
/// Use the data flow results, come up with places to insert the new inst.
void computeCodeMotionInsertPoints() override;
/// Remove the old retains and create the new *moved* refcounted instructions
bool performCodeMotion() override;
/// Compute the BBSetIn and BBSetOut for the current basic
/// block with the generated gen and kill set.
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
/// Merge the data flow states.
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
};
bool ReleaseCodeMotionContext::requireIteration() {
// If all basic blocks will have their successors processed if the basic
// blocks in the functions are iterated in post order. Then this function
// can be processed in one iteration, i.e. no need to generate the genset
// and killset.
BasicBlockSet PBBs(BlockStates.getFunction());
for (SILBasicBlock *B : PO->getPostOrder()) {
for (SILBasicBlock *succ : B->getSuccessors()) {
if (!PBBs.contains(succ))
return true;
}
PBBs.insert(B);
}
return false;
}
void ReleaseCodeMotionContext::initializeCodeMotionDataFlow() {
// All blocks which are initialized with 1-bits. These are all blocks which
// eventually reach the function exit (return, throw), excluding the
// function exit blocks themselves.
// Optimistic initialization enables moving releases across loops. On the
// other hand, blocks, which never reach the function exit, e.g. infinite
// loop blocks, must be excluded. Otherwise we would end up inserting
// completely unrelated release instructions in such blocks.
BasicBlockSet BlocksInitOptimistically(BlockStates.getFunction());
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
// Find all the RC roots in the function.
for (auto &BB : *F) {
for (auto &II : BB) {
if (!isReleaseInstruction(&II))
continue;
// Do not try to enumerate if we are not hoisting epilogue releases.
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&II))
continue;
if (!parentTransform->continueWithNextSubpassRun(&II))
continue;
releaseInstructions.insert(&II);
SILValue Root = getRCRoot(&II);
RCInstructions.insert(&II);
if (RCRootIndex.find(Root) != RCRootIndex.end())
continue;
RCRootIndex[Root] = RCRootVault.size();
RCRootVault.push_back(Root);
LLVM_DEBUG(llvm::dbgs()
<< "Release Root #" << RCRootVault.size() << " " << Root);
}
if (MultiIteration && BB.getTerminator()->isFunctionExiting())
Worklist.push_back(&BB);
}
// Find all blocks from which there is a path to the function exit.
// Note: the Worklist is empty if we are not in MultiIteration mode.
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
if (BlocksInitOptimistically.insert(Pred))
Worklist.push_back(Pred);
}
}
// Initialize all the data flow bit vector for all basic blocks.
for (auto bd : BlockStates) {
bd.data.init(BlocksInitOptimistically.contains(&bd.block) != 0,
RCRootVault.size());
}
}
void ReleaseCodeMotionContext::initializeCodeMotionBBMaxSet() {
for (SILBasicBlock *BB : PO->getPostOrder()) {
// If basic block has no successor, do nothing.
BlockState &State = BlockStates[BB];
if (BB->succ_empty()) {
State.BBMaxSet.reset();
} else {
// Intersect in all successors' BBMaxOuts.
State.BBMaxSet.set();
for (auto E = BB->succ_end(), I = BB->succ_begin(); I != E; ++I) {
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
}
}
// Process the instructions in the basic block to find what refcounted
// roots are released. If we know that an RC root can't be released at a
// basic block, then we know we do not need to consider it for the killset.
// NOTE: this is a conservative approximation, because some releases may be
// blocked before it reaches this block.
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (!isRelease(&*II))
continue;
State.BBMaxSet.set(RCRootIndex[getRCRoot(&*II)]);
}
}
}
void ReleaseCodeMotionContext::computeCodeMotionGenKillSet() {
for (SILBasicBlock *BB : PO->getPostOrder()) {
BlockState &State = BlockStates[BB];
bool InterestBlock = false;
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
// Check whether this instruction blocks any RC root code motion.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&*I, RCRootVault[i]))
continue;
// This instruction blocks this RC root.
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// If this is an epilogue release and we are freezing epilogue release
// simply continue.
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&*I))
continue;
// If this is a release instruction, it also generates.
if (isRelease(&*I)) {
unsigned idx = RCRootIndex[getRCRoot(&*I)];
State.BBGenSet.set(idx);
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
State.BBKillSet.reset(idx);
InterestBlock = true;
}
}
// Handle SILArgument, SILArgument can invalidate.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
auto *A = dyn_cast<SILArgument>(RCRootVault[i]);
if (!A || A->getParent() != BB)
continue;
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// Is this interesting to the last iteration of the data flow.
if (!InterestBlock)
continue;
InterestBlocks.insert(BB);
}
}
void ReleaseCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
BlockState &State = BlockStates[BB];
State.BBSetOut.reset();
// If basic block has no successor, simply reset and return.
if (BB->succ_empty())
return;
// Intersect in all successors' BBSetIn.
auto Iter = BB->succ_begin();
State.BBSetOut = BlockStates[*Iter].BBSetIn;
Iter = std::next(Iter);
for (auto E = BB->succ_end(); Iter != E; ++Iter) {
State.BBSetOut &= BlockStates[*Iter].BBSetIn;
}
}
bool ReleaseCodeMotionContext::performCodeMotion() {
bool Changed = false;
SmallVector<SILInstruction *, 8> NewReleases;
// Create the new releases at each anchor point.
for (auto RC : RCRootVault) {
auto Iter = InsertPoints.find(RC);
if (Iter == InsertPoints.end())
continue;
for (auto IP : Iter->second) {
// we are about to insert a new release instruction before the insertion
// point. Check if the successor instruction is reusable, reuse it, do
// not insert new instruction and delete old one.
if (auto I = getPrevReusableInst(IP, Iter->first)) {
if (RCInstructions.erase(I))
NewReleases.push_back(I);
continue;
}
if (SILInstruction *I = createDecrementBefore(Iter->first, IP).getPtrOrNull())
NewReleases.push_back(I);
Changed = true;
}
}
// Remove the old release instructions.
for (auto R : RCInstructions) {
++NumReleasesHoisted;
recursivelyDeleteTriviallyDeadInstructions(R, true);
}
// Eliminate pairs of retain-release if they are adjacent to each other and
// retain/release the same RCRoot, e.g.
// strong_retain %2
// strong_release %2
for (SILInstruction *ReleaseInst : NewReleases) {
auto InstIter = ReleaseInst->getIterator();
if (InstIter == ReleaseInst->getParent()->begin())
continue;
SILInstruction *PrevInst = &*std::prev(InstIter);
if (isRetainInstruction(PrevInst) && getRCRoot(PrevInst) == getRCRoot(ReleaseInst)) {
recursivelyDeleteTriviallyDeadInstructions(PrevInst, true);
recursivelyDeleteTriviallyDeadInstructions(ReleaseInst, true);
}
}
return Changed;
}
bool ReleaseCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
ReleaseBlockState &State = BlockStates[BB];
// Compute the BBSetOut at the end of the basic block.
mergeBBDataFlowStates(BB);
// Compute the BBSetIn at the beginning of the basic block.
State.BBSetOut.reset(State.BBKillSet);
State.BBSetOut |= State.BBGenSet;
// If BBSetIn changes, then keep iterating until reached a fixed point.
return State.updateBBSetIn(State.BBSetOut);
}