-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathDiagnoseStaticExclusivity.cpp
1128 lines (954 loc) · 41.5 KB
/
DiagnoseStaticExclusivity.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- DiagnoseStaticExclusivity.cpp - Find violations of exclusivity ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements a diagnostic pass that finds violations of the
// "Law of Exclusivity" at compile time. The Law of Exclusivity requires
// that the access duration of any access to an address not overlap
// with an access to the same address unless both accesses are reads.
//
// This pass relies on 'begin_access' and 'end_access' SIL instruction
// markers inserted during SILGen to determine when an access to an address
// begins and ends. It models the in-progress accesses with a map from
// storage locations to the counts of read and write-like accesses in progress
// for that location.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "static-exclusivity"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Stmt.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/Parse/Lexer.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/AccessSummaryAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
enum class RecordedAccessKind {
/// The access was for a 'begin_access' instruction in the current function
/// being checked.
BeginInstruction,
/// The access was inside noescape closure that we either
/// passed to function or called directly. It results from applying the
/// the summary of the closure to the closure's captures.
NoescapeClosureCapture
};
/// Records an access to an address and the single subpath of projections
/// that was performed on the address, if such a single subpath exists.
class RecordedAccess {
private:
RecordedAccessKind RecordKind;
union {
BeginAccessInst *Inst;
struct {
SILAccessKind AccessKind;
SILLocation AccessLoc;
} Closure;
};
const IndexTrieNode *SubPath;
public:
RecordedAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) :
RecordKind(RecordedAccessKind::BeginInstruction), Inst(BAI),
SubPath(SubPath) { }
RecordedAccess(SILAccessKind ClosureAccessKind,
SILLocation ClosureAccessLoc, const IndexTrieNode *SubPath) :
RecordKind(RecordedAccessKind::NoescapeClosureCapture),
Closure({ClosureAccessKind, ClosureAccessLoc}),
SubPath(SubPath) { }
RecordedAccessKind getRecordKind() const {
return RecordKind;
}
BeginAccessInst *getInstruction() const {
assert(RecordKind == RecordedAccessKind::BeginInstruction);
return Inst;
}
SILAccessKind getAccessKind() const {
switch (RecordKind) {
case RecordedAccessKind::BeginInstruction:
return Inst->getAccessKind();
case RecordedAccessKind::NoescapeClosureCapture:
return Closure.AccessKind;
};
llvm_unreachable("unhandled kind");
}
SILLocation getAccessLoc() const {
switch (RecordKind) {
case RecordedAccessKind::BeginInstruction:
return Inst->getLoc();
case RecordedAccessKind::NoescapeClosureCapture:
return Closure.AccessLoc;
};
llvm_unreachable("unhandled kind");
}
const IndexTrieNode *getSubPath() const {
return SubPath;
}
};
/// Records the in-progress accesses to a given sub path.
class SubAccessInfo {
public:
SubAccessInfo(const IndexTrieNode *P) : Path(P) {}
const IndexTrieNode *Path;
/// The number of in-progress 'read' accesses (that is 'begin_access [read]'
/// instructions that have not yet had the corresponding 'end_access').
unsigned Reads = 0;
/// The number of in-progress write-like accesses.
unsigned NonReads = 0;
/// The instruction that began the first in-progress access to the storage
/// location. Used for diagnostic purposes.
std::optional<RecordedAccess> FirstAccess = std::nullopt;
public:
/// Increment the count for given access.
void beginAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) {
if (!FirstAccess) {
assert(Reads == 0 && NonReads == 0);
FirstAccess = RecordedAccess(BAI, SubPath);
}
if (BAI->getAccessKind() == SILAccessKind::Read)
++Reads;
else
++NonReads;
}
/// Decrement the count for given access.
void endAccess(EndAccessInst *EAI) {
if (EAI->getBeginAccess()->getAccessKind() == SILAccessKind::Read)
--Reads;
else
--NonReads;
// If all open accesses are now ended, forget the location of the
// first access.
if (Reads == 0 && NonReads == 0)
FirstAccess = std::nullopt;
}
/// Returns true when there are any accesses to this location in progress.
bool hasAccessesInProgress() const { return Reads > 0 || NonReads > 0; }
/// Returns true when there must have already been a conflict diagnosed
/// for an in-progress access. Used to suppress multiple diagnostics for
/// the same underlying access violation.
bool alreadyHadConflict() const {
return (NonReads > 0 && Reads > 0) || (NonReads > 1);
}
// Returns true when beginning an access of the given Kind can
// result in a conflict with a previous access.
bool canConflictWithAccessOfKind(SILAccessKind Kind) const {
if (Kind == SILAccessKind::Read) {
// A read conflicts with any non-read accesses.
return NonReads > 0;
}
// A non-read access conflicts with any other access.
return NonReads > 0 || Reads > 0;
}
bool conflictsWithAccess(SILAccessKind Kind,
const IndexTrieNode *SubPath) const {
if (!canConflictWithAccessOfKind(Kind))
return false;
return pathsConflict(Path, SubPath);
}
/// Returns true when the two subpaths access overlapping memory.
bool pathsConflict(const IndexTrieNode *Path1,
const IndexTrieNode *Path2) const {
return Path1->isPrefixOf(Path2) || Path2->isPrefixOf(Path1);
}
};
/// Models the in-progress accesses for an address on which access has begun
/// with a begin_access instruction. For a given address, tracks the
/// count and kinds of accesses as well as the subpaths (i.e., projections) that
/// were accessed.
class AccessInfo {
using SubAccessVector = SmallVector<SubAccessInfo, 4>;
SubAccessVector SubAccesses;
/// Returns the SubAccess info for accessing at the given SubPath.
SubAccessInfo &findOrCreateSubAccessInfo(const IndexTrieNode *SubPath) {
for (auto &Info : SubAccesses) {
if (Info.Path == SubPath)
return Info;
}
SubAccesses.emplace_back(SubPath);
return SubAccesses.back();
}
SubAccessVector::const_iterator
findFirstSubPathWithConflict(SILAccessKind OtherKind,
const IndexTrieNode *OtherSubPath) const {
// Note this iteration requires deterministic ordering for repeatable
// diagnostics.
for (auto I = SubAccesses.begin(), E = SubAccesses.end(); I != E; ++I) {
const SubAccessInfo &Access = *I;
if (Access.conflictsWithAccess(OtherKind, OtherSubPath))
return I;
}
return SubAccesses.end();
}
public:
// Returns the previous access when beginning an access of the given Kind will
// result in a conflict with a previous access.
std::optional<RecordedAccess>
conflictsWithAccess(SILAccessKind Kind, const IndexTrieNode *SubPath) const {
auto I = findFirstSubPathWithConflict(Kind, SubPath);
if (I == SubAccesses.end())
return std::nullopt;
return I->FirstAccess;
}
/// Returns true if any subpath of has already had a conflict.
bool alreadyHadConflict() const {
for (const auto &SubAccess : SubAccesses) {
if (SubAccess.alreadyHadConflict())
return true;
}
return false;
}
/// Returns true when there are any accesses to this location in progress.
bool hasAccessesInProgress() const {
for (const auto &SubAccess : SubAccesses) {
if (SubAccess.hasAccessesInProgress())
return true;
}
return false;
}
/// Increment the count for given access.
void beginAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) {
SubAccessInfo &SubAccess = findOrCreateSubAccessInfo(SubPath);
SubAccess.beginAccess(BAI, SubPath);
}
/// Decrement the count for given access.
void endAccess(EndAccessInst *EAI, const IndexTrieNode *SubPath) {
SubAccessInfo &SubAccess = findOrCreateSubAccessInfo(SubPath);
SubAccess.endAccess(EAI);
}
};
/// Indicates whether a 'begin_access' requires exclusive access
/// or allows shared access. This needs to be kept in sync with
/// diag::exclusivity_access_required, exclusivity_access_required_swift3,
/// and diag::exclusivity_conflicting_access.
enum class ExclusiveOrShared_t : unsigned {
ExclusiveAccess = 0,
SharedAccess = 1
};
/// Tracks the in-progress accesses on per-storage-location basis.
using StorageMap = llvm::SmallDenseMap<AccessStorage, AccessInfo, 4>;
/// Represents two accesses that conflict and their underlying storage.
struct ConflictingAccess {
/// Create a conflict for two begin_access instructions in the same function.
ConflictingAccess(const AccessStorage &Storage, const RecordedAccess &First,
const RecordedAccess &Second)
: Storage(Storage), FirstAccess(First), SecondAccess(Second) {}
const AccessStorage Storage;
const RecordedAccess FirstAccess;
const RecordedAccess SecondAccess;
};
} // end anonymous namespace
/// Returns whether an access of the given kind requires exclusive or shared
/// access to its storage.
static ExclusiveOrShared_t getRequiredAccess(SILAccessKind Kind) {
if (Kind == SILAccessKind::Read)
return ExclusiveOrShared_t::SharedAccess;
return ExclusiveOrShared_t::ExclusiveAccess;
}
/// Extract the text for the given expression.
static StringRef extractExprText(const Expr *E, SourceManager &SM) {
const auto CSR = Lexer::getCharSourceRangeFromSourceRange(SM,
E->getSourceRange());
return SM.extractText(CSR);
}
/// Returns true when the call expression is a call to swap() in the Standard
/// Library.
/// This is a helper function that is only used in an assertion, which is why
/// it is in the ifndef.
#ifndef NDEBUG
static bool isCallToStandardLibrarySwap(CallExpr *CE, ASTContext &Ctx) {
if (CE->getCalledValue() == Ctx.getSwap())
return true;
// Is the call module qualified, i.e. Swift.swap(&a[i], &[j)?
if (auto *DSBIE = dyn_cast<DotSyntaxBaseIgnoredExpr>(CE->getFn())) {
if (auto *DRE = dyn_cast<DeclRefExpr>(DSBIE->getRHS())) {
return DRE->getDecl() == Ctx.getSwap();
}
}
return false;
}
#endif
/// Do a syntactic pattern match to determine whether the call is a call
/// to swap(&base[index1], &base[index2]), which can
/// be replaced with a call to MutableCollection.swapAt(_:_:) on base.
///
/// Returns true if the call can be replaced. Returns the call expression,
/// the base expression, and the two indices as out expressions.
///
/// This method takes an array of all the ApplyInsts for calls to swap()
/// in the function to avoid needing to construct a parent map over the AST
/// to find the CallExpr for the inout accesses.
static bool
canReplaceWithCallToCollectionSwapAt(const BeginAccessInst *Access1,
const BeginAccessInst *Access2,
ArrayRef<ApplyInst *> CallsToSwap,
ASTContext &Ctx,
CallExpr *&FoundCall,
Expr *&Base,
Expr *&Index1,
Expr *&Index2) {
if (CallsToSwap.empty())
return false;
// Inout arguments must be modifications.
if (Access1->getAccessKind() != SILAccessKind::Modify ||
Access2->getAccessKind() != SILAccessKind::Modify) {
return false;
}
SILLocation Loc1 = Access1->getLoc();
SILLocation Loc2 = Access2->getLoc();
if (Loc1.isNull() || Loc2.isNull())
return false;
auto *InOut1 = Loc1.getAsASTNode<InOutExpr>();
auto *InOut2 = Loc2.getAsASTNode<InOutExpr>();
if (!InOut1 || !InOut2)
return false;
FoundCall = nullptr;
// Look through all the calls to swap() recorded in the function to find
// which one we're diagnosing.
for (ApplyInst *AI : CallsToSwap) {
SILLocation CallLoc = AI->getLoc();
if (CallLoc.isNull())
continue;
auto *CE = CallLoc.getAsASTNode<CallExpr>();
if (!CE)
continue;
assert(isCallToStandardLibrarySwap(CE, Ctx));
// swap() takes two arguments.
auto *Args = CE->getArgs();
const Expr *Arg1 = Args->getExpr(0);
const Expr *Arg2 = Args->getExpr(1);
if ((Arg1 == InOut1 && Arg2 == InOut2)) {
FoundCall = CE;
break;
}
}
if (!FoundCall)
return false;
// We found a call to swap(&e1, &e2). Now check to see whether it
// matches the form swap(&someCollection[index1], &someCollection[index2]).
auto *SE1 = dyn_cast<SubscriptExpr>(InOut1->getSubExpr());
if (!SE1)
return false;
auto *SE2 = dyn_cast<SubscriptExpr>(InOut2->getSubExpr());
if (!SE2)
return false;
// Do the two subscripts refer to the same subscript declaration?
auto *Decl1 = cast<SubscriptDecl>(SE1->getDecl().getDecl());
auto *Decl2 = cast<SubscriptDecl>(SE2->getDecl().getDecl());
if (Decl1 != Decl2)
return false;
ProtocolDecl *MutableCollectionDecl = Ctx.getMutableCollectionDecl();
// Is the subcript either (1) on MutableCollection itself or (2) a
// a witness for a subscript on MutableCollection?
bool IsSubscriptOnMutableCollection = false;
ProtocolDecl *ProtocolForDecl =
Decl1->getDeclContext()->getSelfProtocolDecl();
if (ProtocolForDecl) {
IsSubscriptOnMutableCollection = (ProtocolForDecl == MutableCollectionDecl);
} else {
for (ValueDecl *Req : Decl1->getSatisfiedProtocolRequirements()) {
DeclContext *ReqDC = Req->getDeclContext();
ProtocolDecl *ReqProto = ReqDC->getSelfProtocolDecl();
assert(ReqProto && "Protocol requirement not in a protocol?");
if (ReqProto == MutableCollectionDecl) {
IsSubscriptOnMutableCollection = true;
break;
}
}
}
if (!IsSubscriptOnMutableCollection)
return false;
// We're swapping two subscripts on mutable collections -- but are they
// the same collection? Approximate this by checking for textual
// equality on the base expressions. This is just an approximation,
// but is fine for a best-effort Fix-It.
SourceManager &SM = Ctx.SourceMgr;
StringRef Base1Text = extractExprText(SE1->getBase(), SM);
StringRef Base2Text = extractExprText(SE2->getBase(), SM);
if (Base1Text != Base2Text)
return false;
if (!SE1->getArgs()->isUnlabeledUnary() ||
!SE2->getArgs()->isUnlabeledUnary()) {
return false;
}
Base = SE1->getBase();
Index1 = SE1->getArgs()->getExpr(0);
Index2 = SE2->getArgs()->getExpr(0);
return true;
}
/// Suggest replacing with call with a call to swapAt().
static void addSwapAtFixit(InFlightDiagnostic &Diag, CallExpr *&FoundCall,
Expr *Base, Expr *&Index1, Expr *&Index2,
SourceManager &SM) {
StringRef BaseText = extractExprText(Base, SM);
StringRef Index1Text = extractExprText(Index1, SM);
StringRef Index2Text = extractExprText(Index2, SM);
SmallString<64> FixItText;
{
llvm::raw_svector_ostream Out(FixItText);
Out << BaseText << ".swapAt(" << Index1Text << ", " << Index2Text << ")";
}
Diag.fixItReplace(FoundCall->getSourceRange(), FixItText);
}
/// Returns a string representation of the BaseName and the SubPath
/// suitable for use in diagnostic text. Only supports the Projections
/// that stored-property relaxation supports: struct stored properties
/// and tuple elements.
static std::string getPathDescription(DeclName BaseName, SILType BaseType,
const IndexTrieNode *SubPath,
SILModule &M,
TypeExpansionContext context) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "'" << BaseName;
os << AccessSummaryAnalysis::getSubPathDescription(BaseType, SubPath, M,
context);
os << "'";
return os.str();
}
/// Emits a diagnostic if beginning an access with the given in-progress
/// accesses violates the law of exclusivity. Returns true when a
/// diagnostic was emitted.
static void diagnoseExclusivityViolation(const ConflictingAccess &Violation,
ArrayRef<ApplyInst *> CallsToSwap,
ASTContext &Ctx) {
const AccessStorage &Storage = Violation.Storage;
const RecordedAccess &FirstAccess = Violation.FirstAccess;
const RecordedAccess &SecondAccess = Violation.SecondAccess;
SILFunction *F = FirstAccess.getInstruction()->getFunction();
LLVM_DEBUG(llvm::dbgs() << "Conflict on " << *FirstAccess.getInstruction()
<< "\n vs " << *SecondAccess.getInstruction()
<< "\n in function " << *F);
// Can't have a conflict if both accesses are reads.
assert(!(FirstAccess.getAccessKind() == SILAccessKind::Read &&
SecondAccess.getAccessKind() == SILAccessKind::Read));
ExclusiveOrShared_t FirstRequires =
getRequiredAccess(FirstAccess.getAccessKind());
// Diagnose on the first access that requires exclusivity.
bool FirstIsMain = (FirstRequires == ExclusiveOrShared_t::ExclusiveAccess);
const RecordedAccess &MainAccess = (FirstIsMain ? FirstAccess : SecondAccess);
const RecordedAccess &NoteAccess = (FirstIsMain ? SecondAccess : FirstAccess);
SourceRange RangeForMain = MainAccess.getAccessLoc().getSourceRange();
unsigned AccessKindForMain =
static_cast<unsigned>(MainAccess.getAccessKind());
SILType BaseType = FirstAccess.getInstruction()->getType().getAddressType();
SILModule &M = FirstAccess.getInstruction()->getModule();
TypeExpansionContext TypeExpansionCtx(
*FirstAccess.getInstruction()->getFunction());
SILType firstAccessType = AccessSummaryAnalysis::getSubPathType(
BaseType, MainAccess.getSubPath(), M, TypeExpansionCtx);
bool isMoveOnly = firstAccessType.isMoveOnly();
if (const ValueDecl *VD = Storage.getDecl()) {
// We have a declaration, so mention the identifier in the diagnostic.
std::string PathDescription =
getPathDescription(VD->getBaseName(), BaseType, MainAccess.getSubPath(),
M, TypeExpansionCtx);
// Determine whether we can safely suggest replacing the violation with
// a call to MutableCollection.swapAt().
bool SuggestSwapAt = false;
CallExpr *CallToReplace = nullptr;
Expr *Base = nullptr;
Expr *SwapIndex1 = nullptr;
Expr *SwapIndex2 = nullptr;
if (SecondAccess.getRecordKind() == RecordedAccessKind::BeginInstruction) {
SuggestSwapAt = canReplaceWithCallToCollectionSwapAt(
FirstAccess.getInstruction(), SecondAccess.getInstruction(),
CallsToSwap, Ctx, CallToReplace, Base, SwapIndex1, SwapIndex2);
}
if (isMoveOnly) {
auto D = diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_access_required_moveonly,
PathDescription, AccessKindForMain);
D.highlight(RangeForMain);
if (SuggestSwapAt)
addSwapAtFixit(D, CallToReplace, Base, SwapIndex1, SwapIndex2,
Ctx.SourceMgr);
} else {
auto D = diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_access_required, PathDescription,
AccessKindForMain, SuggestSwapAt);
D.highlight(RangeForMain);
if (SuggestSwapAt)
addSwapAtFixit(D, CallToReplace, Base, SwapIndex1, SwapIndex2,
Ctx.SourceMgr);
}
} else {
if (isMoveOnly) {
diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_access_required_unknown_decl_moveonly,
AccessKindForMain)
.highlight(RangeForMain);
} else {
diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_access_required_unknown_decl,
AccessKindForMain)
.highlight(RangeForMain);
}
}
diagnose(Ctx, NoteAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_conflicting_access)
.highlight(NoteAccess.getAccessLoc().getSourceRange());
}
/// Returns true when the apply calls the Standard Library swap().
/// Used for fix-its to suggest replacing with Collection.swapAt()
/// on exclusivity violations.
static bool isCallToStandardLibrarySwap(ApplyInst *AI, ASTContext &Ctx) {
SILFunction *SF = AI->getReferencedFunctionOrNull();
if (!SF)
return false;
if (!SF->hasLocation())
return false;
auto *FD = SF->getLocation().getAsASTNode<FuncDecl>();
if (!FD)
return false;
return FD == Ctx.getSwap();
}
static llvm::cl::opt<bool> ShouldAssertOnFailure(
"sil-assert-on-exclusivity-failure",
llvm::cl::desc("Should the compiler assert when it diagnoses conflicting "
"accesses rather than emitting a diagnostic? Intended for "
"use only with debugging."));
/// If making an access of the given kind at the given subpath would
/// would conflict, returns the first recorded access it would conflict
/// with. Otherwise, returns std::nullopt.
static std::optional<RecordedAccess>
shouldReportAccess(const AccessInfo &Info, swift::SILAccessKind Kind,
const IndexTrieNode *SubPath) {
if (Info.alreadyHadConflict())
return std::nullopt;
auto result = Info.conflictsWithAccess(Kind, SubPath);
if (ShouldAssertOnFailure && result.has_value())
llvm_unreachable("Standard assertion routine.");
return result;
}
/// For each projection that the summarized function accesses on its
/// capture, check whether the access conflicts with already-in-progress
/// access. Returns the most general summarized conflict -- so if there are
/// two conflicts in the called function and one is for an access to an
/// aggregate and another is for an access to a projection from the aggregate,
/// this will return the conflict for the aggregate. This approach guarantees
/// determinism and makes it more likely that we'll diagnose the most helpful
/// conflict.
static std::optional<ConflictingAccess>
findConflictingArgumentAccess(const AccessSummaryAnalysis::ArgumentSummary &AS,
const AccessStorage &AccessStorage,
const AccessInfo &InProgressInfo) {
std::optional<RecordedAccess> BestInProgressAccess;
std::optional<RecordedAccess> BestArgAccess;
for (const auto &MapPair : AS.getSubAccesses()) {
const IndexTrieNode *SubPath = MapPair.getFirst();
const auto &SubAccess = MapPair.getSecond();
SILAccessKind Kind = SubAccess.getAccessKind();
auto InProgressAccess = shouldReportAccess(InProgressInfo, Kind, SubPath);
if (!InProgressAccess)
continue;
if (!BestArgAccess ||
AccessSummaryAnalysis::compareSubPaths(SubPath,
BestArgAccess->getSubPath())) {
SILLocation AccessLoc = SubAccess.getAccessLoc();
BestArgAccess = RecordedAccess(Kind, AccessLoc, SubPath);
BestInProgressAccess = InProgressAccess;
}
}
if (!BestArgAccess)
return std::nullopt;
return ConflictingAccess(AccessStorage, *BestInProgressAccess,
*BestArgAccess);
}
// =============================================================================
// The data flow algorithm that drives diagnostics.
// Forward declare verification entry point.
static void checkAccessedAddress(Operand *memOper, StorageMap &Accesses);
namespace {
/// Track the current state of formal accesses, including exclusivity
/// violations, and function summaries at a particular point in the program.
struct AccessState {
AccessSummaryAnalysis *ASA;
// Stores the accesses that have been found to conflict. Used to defer
// emitting diagnostics until we can determine whether they should
// be suppressed.
llvm::SmallVector<ConflictingAccess, 4> ConflictingAccesses;
void recordConflictingAccess(const ConflictingAccess &a) {
ConflictingAccesses.push_back(a);
}
void recordConflictingAccess(const AccessStorage &Storage,
const RecordedAccess &First,
const RecordedAccess &Second) {
ConflictingAccesses.emplace_back(Storage, First, Second);
}
// Collects calls the Standard Library swap() for Fix-Its.
llvm::SmallVector<ApplyInst *, 8> CallsToSwap;
StorageMap *Accesses = nullptr;
AccessState(AccessSummaryAnalysis *ASA) : ASA(ASA) {}
};
} // namespace
// Find conflicting access on each argument using AccessSummaryAnalysis.
static void
checkAccessSummary(ApplySite Apply, AccessState &State,
const AccessSummaryAnalysis::FunctionSummary &FS) {
for (unsigned ArgumentIndex : range(Apply.getNumArguments())) {
unsigned CalleeIndex =
Apply.getCalleeArgIndexOfFirstAppliedArg() + ArgumentIndex;
const AccessSummaryAnalysis::ArgumentSummary &AS =
FS.getAccessForArgument(CalleeIndex);
const auto &SubAccesses = AS.getSubAccesses();
// Is the capture accessed in the callee?
if (SubAccesses.empty())
continue;
SILValue Argument = Apply.getArgument(ArgumentIndex);
assert(Argument->getType().isAddress());
// A valid AccessStorage should always be found because Unsafe accesses
// are not tracked by AccessSummaryAnalysis.
auto Storage = AccessStorage::computeInScope(Argument);
assert(Storage && "captured address must have valid storage");
auto AccessIt = State.Accesses->find(Storage);
// Are there any accesses in progress at the time of the call?
if (AccessIt == State.Accesses->end())
continue;
const AccessInfo &Info = AccessIt->getSecond();
if (auto Conflict = findConflictingArgumentAccess(AS, Storage, Info))
State.recordConflictingAccess(*Conflict);
}
}
/// For each argument in the range of the callee arguments being applied at the
/// given apply site, use the summary analysis to determine whether the
/// arguments will be accessed in a way that conflicts with any currently in
/// progress accesses. If so, diagnose.
static void checkCaptureAccess(ApplySite Apply, AccessState &State) {
// A callee may be nullptr or empty for various reasons, such as being
// dynamically replaceable.
SILFunction *Callee = Apply.getCalleeFunction();
if (Callee && !Callee->empty()) {
checkAccessSummary(Apply, State, State.ASA->getOrCreateSummary(Callee));
return;
}
// In the absence of AccessSummaryAnalysis, conservatively assume by-address
// captures are fully accessed by the callee.
for (Operand &argOper : Apply.getArgumentOperands()) {
auto convention = Apply.getArgumentConvention(argOper);
if (convention != SILArgumentConvention::Indirect_InoutAliasable)
continue;
// A valid AccessStorage should always be found because Unsafe accesses
// are not tracked by AccessSummaryAnalysis.
auto Storage = AccessStorage::computeInScope(argOper.get());
assert(Storage && "captured address must have valid storage");
// Are there any accesses in progress at the time of the call?
auto AccessIt = State.Accesses->find(Storage);
if (AccessIt == State.Accesses->end())
continue;
// The unknown argument access is considered a modify of the root subpath.
auto argAccess = RecordedAccess(SILAccessKind::Modify, Apply.getLoc(),
Apply.getModule().getIndexTrieRoot());
// Construct a conflicting RecordedAccess if one doesn't already exist.
const AccessInfo &info = AccessIt->getSecond();
auto inProgressAccess =
shouldReportAccess(info, SILAccessKind::Modify, argAccess.getSubPath());
if (!inProgressAccess)
continue;
State.recordConflictingAccess(Storage, *inProgressAccess,
argAccess);
}
}
/// If the given values has a SILFunctionType or an Optional<SILFunctionType>,
/// return the SILFunctionType. Otherwise, return an invalid type.
static CanSILFunctionType getSILFunctionTypeForValue(SILValue arg) {
SILType argTy = arg->getType();
// Handle `Optional<@convention(block) @noescape (_)->(_)>`
if (auto optionalObjTy = argTy.getOptionalObjectType())
argTy = optionalObjTy;
return argTy.getAs<SILFunctionType>();
}
/// Recursively check for conflicts with in-progress accesses at the given
/// apply.
///
/// Any captured variable accessed by a noescape closure is considered to be
/// accessed at the point that the closure is fully applied. This includes
/// variables captured by address by the noescape closure being applied or by
/// any other noescape closure that is itself passed as an argument to that
/// closure.
///
/// (1) Use AccessSummaryAnalysis to check each argument for statically
/// enforced accesses nested within the callee.
///
/// (2) If an applied argument is itself a function type, recursively check for
/// violations on the closure being passed as an argument.
///
/// (3) Walk up the chain of partial applies to recursively visit all arguments.
///
/// Note: This handles closures that are called immediately:
/// var i = 7
/// ({ (p: inout Int) in i = 8})(&i) // Overlapping access to 'i'
///
/// Note: This handles chains of partial applies:
/// pa1 = partial_apply f(c) : $(a, b, c)
/// pa2 = partial_apply pa1(b) : $(a, b)
/// apply pa2(a)
static void checkForViolationAtApply(ApplySite Apply, AccessState &State) {
// First, check access to variables immediately captured at this apply site.
checkCaptureAccess(Apply, State);
// Next, recursively check any noescape closures passed as arguments at this
// apply site.
TinyPtrVector<PartialApplyInst *> partialApplies;
for (SILValue Argument : Apply.getArguments()) {
auto FnType = getSILFunctionTypeForValue(Argument);
if (!FnType || !FnType->isNoEscape())
continue;
findClosuresForFunctionValue(Argument, partialApplies);
}
// Continue recursively walking up the chain of applies if necessary.
findClosuresForFunctionValue(Apply.getCallee(), partialApplies);
for (auto *PAI : partialApplies)
checkForViolationAtApply(ApplySite(PAI), State);
}
// Apply transfer function to the AccessState. Beginning an access
// increments the read or write count for the storage location;
// Ending one decrements the count.
static void checkForViolationsAtInstruction(SILInstruction &I,
AccessState &State) {
if (auto *BAI = dyn_cast<BeginAccessInst>(&I)) {
if (BAI->getEnforcement() == SILAccessEnforcement::Unsafe)
return;
SILAccessKind Kind = BAI->getAccessKind();
const AccessStorage &Storage = identifyFormalAccess(BAI);
assert(Storage && "unidentified formal access");
// Storage may be associated with a nested access where the outer access is
// "unsafe". That's ok because the outer access can itself be treated like a
// valid source, as long as we don't ask for its source.
AccessInfo &Info = (*State.Accesses)[Storage];
const IndexTrieNode *SubPath = State.ASA->findSubPathAccessed(BAI);
if (auto Conflict = shouldReportAccess(Info, Kind, SubPath)) {
State.recordConflictingAccess(Storage, *Conflict,
RecordedAccess(BAI, SubPath));
}
Info.beginAccess(BAI, SubPath);
return;
}
if (auto *EAI = dyn_cast<EndAccessInst>(&I)) {
BeginAccessInst *BAI = EAI->getBeginAccess();
if (BAI->getEnforcement() == SILAccessEnforcement::Unsafe)
return;
const AccessStorage &Storage = identifyFormalAccess(BAI);
assert(Storage && "unidentified formal access");
auto It = State.Accesses->find(identifyFormalAccess(BAI));
AccessInfo &Info = It->getSecond();
const IndexTrieNode *SubPath = State.ASA->findSubPathAccessed(BAI);
Info.endAccess(EAI, SubPath);
// If the storage location has no more in-progress accesses, remove
// it to keep the StorageMap lean.
if (!Info.hasAccessesInProgress())
State.Accesses->erase(It);
return;
}
if (I.getModule().getOptions().VerifyExclusivity && I.mayReadOrWriteMemory()) {
visitAccessedAddress(&I, [&State](Operand *memOper) {
checkAccessedAddress(memOper, *State.Accesses);
});
}
if (auto apply = FullApplySite::isa(&I)) {
if (auto *AI = dyn_cast<ApplyInst>(&I)) {
// Record calls to swap() for potential Fix-Its.
if (isCallToStandardLibrarySwap(AI, I.getFunction()->getASTContext())) {
State.CallsToSwap.push_back(AI);
return;
}
}
checkForViolationAtApply(apply, State);
return;
}
// Soundness check to make sure entries are properly removed.
assert((!isa<ReturnInst>(&I) || State.Accesses->empty())
&& "Entries were not properly removed?!");
}
static void checkStaticExclusivity(SILFunction &Fn, PostOrderFunctionInfo *PO,
AccessSummaryAnalysis *ASA) {
// The implementation relies on the following SIL invariants:
// - All incoming edges to a block must have the same in-progress
// accesses. This enables the analysis to not perform a data flow merge
// on incoming edges.
// - Further, for a given address each of the in-progress
// accesses must have begun in the same order on all edges. This ensures
// consistent diagnostics across changes to the exploration of the CFG.
// - On return from a function there are no in-progress accesses. This
// enables a soundness check for lean analysis state at function exit.
// - Each end_access instruction corresponds to exactly one begin access
// instruction. (This is encoded in the EndAccessInst itself)
// - begin_access arguments cannot be basic block arguments.
// This enables the analysis to look back to find the *single* storage
// storage location accessed.
if (Fn.empty())
return;
AccessState State(ASA);
// For each basic block, track the stack of current accesses on
// exit from that block.
llvm::SmallDenseMap<SILBasicBlock *, std::optional<StorageMap>, 32>
BlockOutAccesses;
BlockOutAccesses[Fn.getEntryBlock()] = StorageMap();
for (auto *BB : PO->getReversePostOrder()) {
std::optional<StorageMap> &BBState = BlockOutAccesses[BB];
// Because we use a reverse post-order traversal, unless this is the entry
// at least one of its predecessors must have been reached. Use the out
// state for that predecessor as our in state. The SIL verifier guarantees
// that all incoming edges must have the same current accesses.
for (auto *Pred : BB->getPredecessorBlocks()) {
auto it = BlockOutAccesses.find(Pred);
if (it == BlockOutAccesses.end())
continue;
const std::optional<StorageMap> &PredAccesses = it->getSecond();
if (PredAccesses) {
BBState = PredAccesses;
break;
}
}
// The in-progress accesses for the current program point, represented
// as map from storage locations to the accesses in progress for the
// location.
State.Accesses = &*BBState;
for (auto &I : *BB)
checkForViolationsAtInstruction(I, State);
}
// Now that we've collected violations and suppressed calls, emit
// diagnostics.
for (auto &Violation : State.ConflictingAccesses) {
diagnoseExclusivityViolation(Violation, State.CallsToSwap,
Fn.getASTContext());
}
}
// =============================================================================
// Verification
// Check that the given address-type operand is guarded by begin/end access
// markers.
static void checkAccessedAddress(Operand *memOper, StorageMap &Accesses) {
SILValue accessBegin = getAccessScope(memOper->get());