-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILGenProlog.cpp
1730 lines (1505 loc) · 67 KB
/
SILGenProlog.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentSource.h"
#include "ExecutorBreadcrumb.h"
#include "FunctionInputGenerator.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "SILGenFunction.h"
#include "Scope.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Generators.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILArgumentConvention.h"
#include "swift/SIL/SILInstruction.h"
using namespace swift;
using namespace Lowering;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
SILValue SILGenFunction::emitSelfDeclForDestructor(VarDecl *selfDecl) {
SILFunctionConventions conventions = F.getConventionsInContext();
// Emit the implicit 'self' argument.
SILType selfType = conventions.getSILArgumentType(
conventions.getNumSILArguments() - 1, F.getTypeExpansionContext());
selfType = F.mapTypeIntoContext(selfType);
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
uint16_t ArgNo = 1; // Hardcoded for destructors.
auto dv = SILDebugVariable(selfDecl->isLet(), ArgNo);
// If we have a move only type, then mark it with
// mark_unresolved_non_copyable_value so we can't escape it.
//
// For now, we do not handle move only class deinits. This is because we need
// to do a bit more refactoring to handle the weird way that it deals with
// ownership. But for simple move only deinits (like struct/enum), that are
// owned, lets mark them as needing to be no implicit copy checked so they
// cannot escape.
if (selfType.isMoveOnly() && !selfType.isAnyClassReferenceType()) {
SILValue addr = B.createAllocStack(selfDecl, selfValue->getType(), dv);
addr = B.createMarkUnresolvedNonCopyableValueInst(
selfDecl, addr,
MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
if (selfValue->getType().isObject()) {
B.createStore(selfDecl, selfValue, addr, StoreOwnershipQualifier::Init);
} else {
B.createCopyAddr(selfDecl, selfValue, addr, IsTake, IsInitialization);
}
// drop_deinit invalidates any user-defined struct/enum deinit
// before the individual members are destroyed.
addr = B.createDropDeinit(selfDecl, addr);
selfValue = addr;
}
VarLocs[selfDecl] = VarLoc(selfValue, SILAccessEnforcement::Unknown);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
B.emitDebugDescription(PrologueLoc, selfValue, dv);
return selfValue;
}
namespace {
struct LoweredParamGenerator {
SILGenFunction &SGF;
CanSILFunctionType fnTy;
ArrayRefGenerator<ArrayRef<SILParameterInfo>> parameterTypes;
LoweredParamGenerator(SILGenFunction &SGF,
unsigned numIgnoredTrailingParameters)
: SGF(SGF), fnTy(SGF.F.getLoweredFunctionType()),
parameterTypes(
SGF.F.getLoweredFunctionTypeInContext(SGF.B.getTypeExpansionContext())
->getParameters().drop_back(numIgnoredTrailingParameters)) {}
ParamDecl *paramDecl = nullptr;
bool isNoImplicitCopy = false;
LifetimeAnnotation lifetimeAnnotation = LifetimeAnnotation::None;
bool isImplicitParameter = false;
void configureParamData(ParamDecl *paramDecl, bool isNoImplicitCopy,
LifetimeAnnotation lifetimeAnnotation) {
this->paramDecl = paramDecl;
this->isNoImplicitCopy = isNoImplicitCopy;
this->lifetimeAnnotation = lifetimeAnnotation;
this->isImplicitParameter = false;
}
void configureParamDataForImplicitParam() { isImplicitParameter = true; }
void resetParamData() {
configureParamData(nullptr, false, LifetimeAnnotation::None);
}
ManagedValue claimNext() {
auto parameterInfo = parameterTypes.claimNext();
// We should only be called without a param decl when pulling pack
// parameters out for multiple formal parameters (or a single formal
// parameter pack) or if we have an implicit parameter.
//
// TODO: preserve the parameters captured by the pack into the SIL
// representation.
bool isFormalParameterPack = (paramDecl == nullptr) && !isImplicitParameter;
assert(!isFormalParameterPack || parameterInfo.isPack());
auto paramType =
SGF.F.mapTypeIntoContext(SGF.getSILType(parameterInfo, fnTy));
ManagedValue mv = SGF.B.createInputFunctionArgument(
paramType, paramDecl, isNoImplicitCopy, lifetimeAnnotation,
/*isClosureCapture*/ false, isFormalParameterPack, isImplicitParameter);
return mv;
}
std::optional<SILParameterInfo> peek() const {
if (isFinished())
return {};
return parameterTypes.get();
}
bool isFinished() const {
return parameterTypes.isFinished();
}
void advance() {
(void) claimNext();
}
void finish() {
parameterTypes.finish();
}
};
struct WritebackReabstractedInoutCleanup final : Cleanup {
SILValue OrigAddress, SubstAddress;
AbstractionPattern OrigTy;
CanType SubstTy;
WritebackReabstractedInoutCleanup(SILValue origAddress, SILValue substAddress,
AbstractionPattern origTy,
CanType substTy)
: OrigAddress(origAddress), SubstAddress(substAddress),
OrigTy(origTy), SubstTy(substTy)
{}
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind)
override {
Scope s(SGF.Cleanups, l);
// Load the final local value coming in.
auto mv = SGF.emitLoad(l, SubstAddress,
SGF.getTypeLowering(SubstAddress->getType()),
SGFContext(), IsTake);
// Reabstract the value back to the original representation.
mv = SGF.emitSubstToOrigValue(l, mv.ensurePlusOne(SGF, l),
OrigTy, SubstTy);
// Write it back to the original inout parameter.
SGF.B.createStore(l, mv.forward(SGF), OrigAddress,
StoreOwnershipQualifier::Init);
}
void dump(SILGenFunction&) const override {
llvm::errs() << "WritebackReabstractedInoutCleanup\n";
OrigAddress->print(llvm::errs());
SubstAddress->print(llvm::errs());
}
};
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue,
/*ArgTys...*/ AbstractionPattern,
Initialization *>
{
public:
SILGenFunction &SGF;
SILLocation loc;
LoweredParamGenerator ¶meters;
EmitBBArguments(SILLocation l, LoweredParamGenerator ¶meters)
: SGF(parameters.SGF), loc(l), parameters(parameters) {}
ManagedValue claimNextParameter() {
return parameters.claimNext();
}
ManagedValue handleParam(AbstractionPattern origType, CanType substType,
ParamDecl *pd, bool isAddressable) {
// Note: inouts of tuples are not exploded, so we bypass visit().
if (pd->isInOut()) {
return handleInOut(origType, substType, pd->isAddressable());
}
// Addressability also suppresses exploding the parameter.
if (isAddressable) {
return handleScalar(claimNextParameter(),
AbstractionPattern::getOpaque(), substType,
/*emitInto*/ nullptr,
/*inout*/ false, /*addressable*/ true);
}
return visit(substType, origType, /*emitInto*/ nullptr);
}
ManagedValue handlePackComponent(FunctionInputGenerator &formalParam) {
auto origPatternType =
formalParam.getOrigType().getPackExpansionPatternType();
auto substParam = formalParam.getSubstParam();
CanType substType = substParam.getParameterType();
// Forward the pack cleanup and enter a new cleanup for the
// remaining components.
auto componentValue = formalParam.projectPackComponent(SGF, loc);
// Handle scalar components.
if (!isa<PackExpansionType>(substType)) {
return handleScalar(componentValue, origPatternType, substType,
/*emit into*/ nullptr,
substParam.isInOut(),
/*is addressable*/ false);
}
auto componentPackTy = componentValue.getType().castTo<SILPackType>();
// Handle pack expansion components.
auto formalPackType = formalParam.getFormalPackType();
auto componentIndex = formalParam.getPackComponentIndex();
auto expectedExpansionTy = SGF.getLoweredRValueType(substType);
auto expectedPackTy =
SILPackType::get(SGF.getASTContext(), componentPackTy->getExtInfo(),
{expectedExpansionTy});
// If we don't need a pack transformation, this is simple.
// This is simultaneously testing that we don't need a transformation
// and that we don't have other components in the pack.
if (componentPackTy == expectedPackTy) {
return componentValue;
}
// FIXME: perform this forwarding by just slicing the original pack.
bool canForward =
(expectedExpansionTy == componentPackTy->getElementType(componentIndex));
auto rawOutputPackAddr =
SGF.emitTemporaryPackAllocation(loc,
SILType::getPrimitiveObjectType(expectedPackTy));
auto outputFormalPackType =
CanPackType::get(SGF.getASTContext(), {substType});
return SGF.emitPackTransform(loc, componentValue,
formalPackType, componentIndex,
rawOutputPackAddr, outputFormalPackType, 0,
canForward, /*plus one*/ !canForward,
[&](ManagedValue input, SILType outputTy,
SGFContext context) {
if (canForward) return input;
auto substEltType =
cast<PackExpansionType>(substType).getPatternType();
if (auto openedEnv = SGF.getInnermostPackExpansion()->OpenedElementEnv) {
substEltType =
openedEnv->mapContextualPackTypeIntoElementContext(substEltType);
}
return handleScalar(input, origPatternType, substEltType,
context.getEmitInto(),
/*inout*/ false,
/*addressable*/ false);
});
}
ManagedValue visitType(CanType t, AbstractionPattern orig,
Initialization *emitInto) {
auto mv = claimNextParameter();
return handleScalar(mv, orig, t, emitInto,
/*inout*/ false,
/*addressable*/ false);
}
ManagedValue handleInOut(AbstractionPattern orig, CanType t,
bool isAddressable) {
auto mv = claimNextParameter();
return handleScalar(mv, orig, t, /*emitInto*/ nullptr,
/*inout*/ true,
isAddressable);
}
ManagedValue handleScalar(ManagedValue mv,
AbstractionPattern orig, CanType t,
Initialization *emitInto,
bool isInOut,
bool isAddressable) {
assert(!(isInOut && emitInto != nullptr));
auto argType = SGF.getLoweredType(t, mv.getType().getCategory());
// This is a hack to deal with the fact that Self.Type comes in as a static
// metatype, but we have to downcast it to a dynamic Self metatype to get
// the right semantics.
if (argType != mv.getType()) {
if (auto argMetaTy = argType.getAs<MetatypeType>()) {
if (auto argSelfTy = dyn_cast<DynamicSelfType>(argMetaTy.getInstanceType())) {
assert(argSelfTy.getSelfType()
== mv.getType().castTo<MetatypeType>().getInstanceType());
mv = SGF.B.createUncheckedBitCast(loc, mv, argType);
}
}
}
if (isInOut) {
// If we are inout and are move only, insert a note to the move checker to
// check ownership.
if (mv.getType().isMoveOnly() && !mv.getType().isMoveOnlyWrapped())
mv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, mv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable);
// If the value needs to be reabstracted, set up a shadow copy with
// writeback here.
if (argType.getASTType() != mv.getType().getASTType()) {
// Load the value coming in.
auto origBuf = mv.getValue();
mv = SGF.emitLoad(loc, origBuf, SGF.getTypeLowering(mv.getType()), SGFContext(), IsTake);
// Reabstract the value if necessary.
mv = SGF.emitOrigToSubstValue(loc, mv.ensurePlusOne(SGF, loc), orig, t);
// Store the value to a local buffer.
auto substBuf = SGF.emitTemporaryAllocation(loc, argType);
SGF.B.createStore(loc, mv.forward(SGF), substBuf, StoreOwnershipQualifier::Init);
// Introduce a writeback to put the final value back in the inout.
SGF.Cleanups.pushCleanup<WritebackReabstractedInoutCleanup>(origBuf, substBuf, orig, t);
mv = ManagedValue::forLValue(substBuf);
}
return mv;
}
// If the parameter is marked `@_addressable`, then we want to defer any
// reabstraction of the parameter as received, so that we can use the
// original value at its stable address when possible.
bool argIsLoadable = false;
if (!isAddressable) {
argIsLoadable = argType.isLoadable(SGF.F);
// This can happen if the value is resilient in the calling convention
// but not resilient locally.
if (argIsLoadable) {
if (argType.isAddress()) {
mv = SGF.B.createLoadWithSameOwnership(loc, mv);
argType = argType.getObjectType();
}
}
assert(argType.getCategory() == mv.getType().getCategory());
if (argType.getASTType() != mv.getType().getASTType()) {
// Reabstract the value if necessary.
mv = SGF.emitOrigToSubstValue(loc, mv.ensurePlusOne(SGF, loc), orig, t);
}
}
if (parameters.isNoImplicitCopy && !argIsLoadable) {
// We do not support no implicit copy address only types. Emit an error.
auto diag = diag::noimplicitcopy_used_on_generic_or_existential;
diagnose(SGF.getASTContext(), mv.getValue().getLoc().getSourceLoc(),
diag);
}
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getOptionalObjectType())
objectType = theObjTy;
if (isa<FunctionType>(objectType) &&
cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = SGF.B.createCopyBlock(loc, mv.getValue());
mv = SGF.emitManagedRValueWithCleanup(blockCopy);
}
if (emitInto) {
if (mv.isPlusOneOrTrivial(SGF))
mv.forwardInto(SGF, loc, emitInto);
else
mv.copyInto(SGF, loc, emitInto);
return ManagedValue::forInContext();
}
return mv;
}
ManagedValue visitPackExpansionType(CanPackExpansionType t,
AbstractionPattern orig,
Initialization *emitInto) {
// Pack expansions in the formal parameter list are made
// concrete as packs.
return visitType(PackType::get(SGF.getASTContext(), {t})
->getCanonicalType(),
orig, emitInto);
}
ManagedValue visitTupleType(CanTupleType t, AbstractionPattern orig,
Initialization *emitInto) {
// Only destructure if the abstraction pattern is also a tuple.
if (!orig.isTuple())
return visitType(t, orig, emitInto);
auto &tl = SGF.SGM.Types.getTypeLowering(t, SGF.getTypeExpansionContext());
// If the tuple contains pack expansions, and we're not emitting
// into an initialization already, create a temporary so that we're
// always emitting into an initialization.
if (t.containsPackExpansionType() && !emitInto) {
auto temporary = SGF.emitTemporary(loc, tl);
auto result = expandTuple(orig, t, tl, temporary.get());
assert(result.isInContext()); (void) result;
return temporary->getManagedAddress();
}
return expandTuple(orig, t, tl, emitInto);
}
ManagedValue expandTuple(AbstractionPattern orig, CanTupleType t,
const TypeLowering &tl, Initialization *init) {
assert((!t.containsPackExpansionType() || init) &&
"should always have an emission context when expanding "
"a tuple containing pack expansions");
bool canBeGuaranteed = tl.isLoadable();
// We only use specific initializations here that can always be split.
SmallVector<InitializationPtr, 8> eltInitsBuffer;
MutableArrayRef<InitializationPtr> eltInits;
if (init) {
assert(init->canSplitIntoTupleElements());
eltInits = init->splitIntoTupleElements(SGF, loc, t, eltInitsBuffer);
}
// Collect the exploded elements.
//
// Reabstraction can give us original types that are pack
// expansions without having pack expansions in the result.
// In this case, we do not need to force emission into a pack
// expansion.
SmallVector<ManagedValue, 4> elements;
orig.forEachTupleElement(t, [&](TupleElementGenerator &elt) {
auto origEltType = elt.getOrigType();
auto substEltTypes = elt.getSubstTypes();
if (!elt.isOrigPackExpansion()) {
auto eltValue =
visit(substEltTypes[0], origEltType,
init ? eltInits[elt.getSubstIndex()].get() : nullptr);
assert((init != nullptr) == (eltValue.isInContext()));
if (!eltValue.isInContext())
elements.push_back(eltValue);
if (eltValue.hasCleanup())
canBeGuaranteed = false;
} else {
assert(init);
expandPack(origEltType, substEltTypes, elt.getSubstIndex(),
eltInits.slice(elt.getSubstIndex(), substEltTypes.size()),
elements);
}
});
// If we emitted into a context, we're done.
if (init) {
init->finishInitialization(SGF);
return ManagedValue::forInContext();
}
if (tl.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(SGF)
: element.copyUnmanaged(SGF, loc).forward(SGF);
elementValues.push_back(value);
}
}
auto tupleValue = SGF.B.createTuple(loc, tl.getLoweredType(),
elementValues);
if (tupleValue->getOwnershipKind() == OwnershipKind::None)
return ManagedValue::forObjectRValueWithoutOwnership(tupleValue);
return canBeGuaranteed ? ManagedValue::forBorrowedObjectRValue(tupleValue)
: SGF.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = SGF.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = SGF.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(SGF, loc, elementBuffer);
else
element.copyInto(SGF, loc, elementBuffer);
}
return SGF.emitManagedRValueWithCleanup(buffer);
}
}
void expandPack(AbstractionPattern origExpansionType,
CanTupleEltTypeArrayRef substEltTypes,
size_t firstSubstEltIndex,
MutableArrayRef<InitializationPtr> eltInits,
SmallVectorImpl<ManagedValue> &eltMVs) {
assert(substEltTypes.size() == eltInits.size());
// The next parameter is a pack which corresponds to some number of
// components in the tuple. Some of them may be pack expansions.
// Either copy/move them into the tuple (necessary if there are any
// pack expansions) or collect them in eltMVs.
// Claim the next parameter, remember whether it was +1, and forward
// the cleanup. We can get away with just forwarding the cleanup
// up front, not destructuring it, because we assume that the work
// we're doing here won't ever unwind.
ManagedValue packAddrMV = claimNextParameter();
CleanupCloner cloner(SGF, packAddrMV);
SILValue packAddr = packAddrMV.forward(SGF);
auto packTy = packAddr->getType().castTo<SILPackType>();
auto origPatternType = origExpansionType.getPackExpansionPatternType();
auto inducedPackType =
CanPackType::get(SGF.getASTContext(), substEltTypes);
for (auto packComponentIndex : indices(substEltTypes)) {
CanType substComponentType = substEltTypes[packComponentIndex];
Initialization *componentInit =
eltInits.empty() ? nullptr : eltInits[packComponentIndex].get();
auto packComponentTy = packTy->getSILElementType(packComponentIndex);
auto substExpansionType =
dyn_cast<PackExpansionType>(substComponentType);
// In the scalar case, project out the element address from the
// pack and use the normal scalar path to trigger initialization.
if (!substExpansionType) {
auto packIndex =
SGF.B.createScalarPackIndex(loc, packComponentIndex, inducedPackType);
auto eltAddr =
SGF.B.createPackElementGet(loc, packIndex, packAddr,
packComponentTy);
auto eltAddrMV = cloner.clone(eltAddr);
auto result = handleScalar(eltAddrMV, origPatternType,
substComponentType, componentInit,
/*inout*/ false,
/*addressable*/ false);
assert(result.isInContext() == (componentInit != nullptr));
if (!result.isInContext())
eltMVs.push_back(result);
continue;
}
// In the pack-expansion case, do the exact same thing,
// but in a pack loop.
assert(componentInit);
assert(componentInit->canPerformPackExpansionInitialization());
SILType eltTy;
CanType substEltType;
auto openedEnv =
SGF.createOpenedElementValueEnvironment({packComponentTy},
{&eltTy},
{substExpansionType},
{&substEltType});
SGF.emitDynamicPackLoop(loc, inducedPackType, packComponentIndex,
openedEnv, [&](SILValue indexWithinComponent,
SILValue expansionPackIndex,
SILValue packIndex) {
componentInit->performPackExpansionInitialization(SGF, loc,
indexWithinComponent,
[&](Initialization *eltInit) {
// Project out the pack element and enter a managed value for it.
auto eltAddr =
SGF.B.createPackElementGet(loc, packIndex, packAddr, eltTy);
auto eltAddrMV = cloner.clone(eltAddr);
auto result = handleScalar(eltAddrMV, origPatternType, substEltType,
eltInit,
/*inout*/ false,
/*addressable*/ false);
assert(result.isInContext()); (void) result;
});
});
componentInit->finishInitialization(SGF);
}
}
};
/// A helper for creating SILArguments and binding variables to the argument
/// names.
class ArgumentInitHelper {
SILGenFunction &SGF;
LoweredParamGenerator loweredParams;
uint16_t ArgNo = 0;
std::optional<FunctionInputGenerator> FormalParamTypes;
SmallPtrSet<ParamDecl *, 2> ScopedDependencies;
SmallPtrSet<ParamDecl *, 2> AddressableParams;
public:
ArgumentInitHelper(SILGenFunction &SGF,
unsigned numIgnoredTrailingParameters,
llvm::SmallPtrSet<ParamDecl*, 2> &&scopedDependencies)
: SGF(SGF), loweredParams(SGF, numIgnoredTrailingParameters),
ScopedDependencies(std::move(scopedDependencies)) {}
/// Emit the given list of parameters.
unsigned emitParams(std::optional<AbstractionPattern> origFnType,
ParameterList *paramList, ParamDecl *selfParam) {
// If have an orig function type, initialize FormalParamTypes.
SmallVector<AnyFunctionType::Param, 8> substFormalParams;
if (origFnType) {
// Start by constructing an array of subst params that we can use
// for the generator. This array needs to stay in scope across
// the loop below, while we're potentially using FormalParamTypes.
auto addParamDecl = [&](ParamDecl *pd) {
if (pd->hasExternalPropertyWrapper())
pd = cast<ParamDecl>(pd->getPropertyWrapperBackingProperty());
substFormalParams.push_back(
pd->toFunctionParam(pd->getTypeInContext()).getCanonical(nullptr));
};
for (auto paramDecl : *paramList) {
addParamDecl(paramDecl);
}
if (selfParam) {
addParamDecl(selfParam);
}
// Initialize the formal parameter generator. Note that this can
// immediately claim lowered parameters.
// Some of the callers to emitBasicProlog do ask it to ignore the
// formal self parameter, but they do not pass an origFnType down,
// so we can ignore that possibility.
FormalParamTypes.emplace(SGF.getASTContext(), loweredParams, *origFnType,
llvm::ArrayRef(substFormalParams),
/*ignore final*/ false);
}
// Go through all of our implicit SIL parameters and emit them. These do not
// exist in the AST and always appear in between the results and the
// explicit parameters.
while (auto param = loweredParams.peek()) {
if (!param->hasOption(SILParameterInfo::ImplicitLeading))
break;
loweredParams.configureParamDataForImplicitParam();
loweredParams.advance();
loweredParams.resetParamData();
}
// Emit each of the function's explicit parameters in order.
if (paramList) {
for (auto *param : *paramList)
emitParam(param);
}
// The self parameter follows the formal parameters.
if (selfParam) {
emitParam(selfParam);
}
if (FormalParamTypes) FormalParamTypes->finish();
loweredParams.finish();
return ArgNo;
}
private:
ManagedValue makeArgument(SILLocation loc, ParamDecl *pd) {
LifetimeAnnotation lifetimeAnnotation = LifetimeAnnotation::None;
bool isNoImplicitCopy = false;
if (pd->isSelfParameter()) {
if (auto *afd = dyn_cast<AbstractFunctionDecl>(pd->getDeclContext())) {
lifetimeAnnotation = afd->getLifetimeAnnotation();
isNoImplicitCopy = afd->isNoImplicitCopy();
}
} else {
lifetimeAnnotation = pd->getLifetimeAnnotation();
isNoImplicitCopy = pd->isNoImplicitCopy();
}
// Configure the lowered parameter generator for this formal parameter.
loweredParams.configureParamData(pd, isNoImplicitCopy, lifetimeAnnotation);
ManagedValue paramValue;
EmitBBArguments argEmitter(loc, loweredParams);
if (FormalParamTypes && FormalParamTypes->isOrigPackExpansion()) {
paramValue = argEmitter.handlePackComponent(*FormalParamTypes);
} else {
auto substType = pd->getTypeInContext()->getCanonicalType();
assert(!FormalParamTypes ||
FormalParamTypes->getSubstParam().getParameterType() == substType);
auto origType = (FormalParamTypes ? FormalParamTypes->getOrigType()
: AbstractionPattern(substType));
// A parameter can be directly marked as addressable, or its
// addressability can be implied by a scoped dependency.
bool isAddressable = false;
isAddressable = pd->isAddressable()
|| (ScopedDependencies.contains(pd)
&& SGF.getTypeLowering(origType, substType)
.getRecursiveProperties().isAddressableForDependencies());
if (isAddressable) {
AddressableParams.insert(pd);
}
paramValue = argEmitter.handleParam(origType, substType, pd,
isAddressable);
}
// Reset the parameter data on the lowered parameter generator.
loweredParams.resetParamData();
// Advance the formal parameter types generator. This must happen
// after resetting parameter data because it can claim lowered
// parameters.
if (FormalParamTypes) {
FormalParamTypes->advance();
}
return paramValue;
}
void updateArgumentValueForBinding(ManagedValue argrv, SILLocation loc,
ParamDecl *pd,
const SILDebugVariable &varinfo) {
bool calledCompletedUpdate = false;
SWIFT_DEFER {
assert(calledCompletedUpdate && "Forgot to call completed update along "
"all paths or manually turn it off");
};
auto completeUpdate = [&](ManagedValue value) -> void {
SGF.B.emitDebugDescription(loc, value.getValue(), varinfo);
SGF.VarLocs[pd] = SILGenFunction::VarLoc(value.getValue(),
SILAccessEnforcement::Unknown);
calledCompletedUpdate = true;
};
// If we do not need to support lexical lifetimes, just return value as the
// updated value.
if (!SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule()))
return completeUpdate(argrv);
// Look for the following annotations on the function argument:
// - @noImplicitCopy
// - @_eagerMove
// - @_noEagerMove
bool isNoImplicitCopy = pd->isNoImplicitCopy();
if (!argrv.getType().isMoveOnly(/*orWrapped=*/false)) {
isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Borrowing;
isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Consuming;
if (pd->isSelfParameter()) {
auto *dc = pd->getDeclContext();
if (auto *fn = dyn_cast<FuncDecl>(dc)) {
auto accessKind = fn->getSelfAccessKind();
isNoImplicitCopy |= accessKind == SelfAccessKind::Borrowing;
isNoImplicitCopy |= accessKind == SelfAccessKind::Consuming;
}
}
}
// If we have a no implicit copy argument and the argument is trivial,
// we need to use copyable to move only to convert it to its move only
// form.
if (!isNoImplicitCopy) {
if (!argrv.getType().isMoveOnly()) {
// Follow the normal path. The value's lifetime will be enforced based
// on its ownership.
return completeUpdate(argrv);
}
// At this point, we have a noncopyable type. If it is owned, create an
// alloc_box for it.
if (argrv.getOwnershipKind() == OwnershipKind::Owned) {
// TODO: Once owned values are mutable, this needs to become mutable.
auto boxType = SGF.SGM.Types.getContextBoxTypeForCapture(
pd,
SGF.SGM.Types.getLoweredRValueType(TypeExpansionContext::minimal(),
pd->getTypeInContext()),
SGF.F.getGenericEnvironment(),
/*mutable*/ false);
auto *box = SGF.B.createAllocBox(loc, boxType, varinfo);
SILValue destAddr = SGF.B.createProjectBox(loc, box, 0);
SGF.B.emitStoreValueOperation(loc, argrv.forward(SGF), destAddr,
StoreOwnershipQualifier::Init);
SGF.emitManagedRValueWithCleanup(box);
// We manually set calledCompletedUpdate to true since we want to use
// the debug info from the box rather than insert a custom debug_value.
calledCompletedUpdate = true;
SGF.VarLocs[pd] = SILGenFunction::VarLoc(destAddr,
pd->isImmutableInFunctionBody() ? SILAccessEnforcement::Unknown
: SILAccessEnforcement::Dynamic,
box);
return;
}
// If we have a guaranteed noncopyable argument, we do something a little
// different. Specifically, we emit it as normal and do a non-consume or
// assign. The reason why we do this is that a guaranteed argument cannot
// be used in an escaping closure. So today, we leave it with the
// misleading consuming message. We still are able to pass it to
// non-escaping closures though since the onstack partial_apply does not
// consume the value.
assert(argrv.getOwnershipKind() == OwnershipKind::Guaranteed);
argrv = argrv.copy(SGF, loc);
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
return completeUpdate(argrv);
}
if (argrv.getType().isTrivial(SGF.F)) {
SILValue value = SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(
loc, argrv.getValue());
argrv = SGF.emitManagedRValueWithCleanup(value);
argrv = SGF.B.createMoveValue(loc, argrv, IsLexical);
// If our argument was owned, we use no implicit copy. Otherwise, we
// use no copy.
MarkUnresolvedNonCopyableValueInst::CheckKind kind;
switch (pd->getValueOwnership()) {
case ValueOwnership::Default:
case ValueOwnership::Shared:
case ValueOwnership::InOut:
kind = MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign;
break;
case ValueOwnership::Owned:
kind = MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable;
break;
}
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(loc, argrv, kind);
return completeUpdate(argrv);
}
if (argrv.getOwnershipKind() == OwnershipKind::Guaranteed) {
argrv = SGF.B.createGuaranteedCopyableToMoveOnlyWrapperValue(loc, argrv);
argrv = argrv.copy(SGF, loc);
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
return completeUpdate(argrv);
}
if (argrv.getOwnershipKind() == OwnershipKind::Owned) {
// If we have an owned value, forward it into the
// mark_unresolved_non_copyable_value to avoid an extra destroy_value.
argrv = SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(loc, argrv);
argrv = SGF.B.createMoveValue(loc, argrv, IsLexical);
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable);
return completeUpdate(argrv);
}
return completeUpdate(argrv);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(SILLocation loc, ParamDecl *pd) {
ManagedValue argrv = makeArgument(loc, pd);
if (pd->isInOut()) {
assert(argrv.getType().isAddress() && "expected inout to be address");
} else if (!pd->isImmutableInFunctionBody()) {
// If it's a locally mutable parameter, then we need to move the argument
// value into a local box to hold the mutated value.
// We don't need to mark_uninitialized since we immediately initialize.
auto mutableBox =
SGF.emitLocalVariableWithCleanup(pd,
/*uninitialized kind*/ std::nullopt);
argrv.ensurePlusOne(SGF, loc).forwardInto(SGF, loc, mutableBox.get());
return;
}
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
SILDebugVariable varinfo(pd->isImmutableInFunctionBody(), ArgNo);
if (!argrv.getType().isAddress()) {
// NOTE: We setup SGF.VarLocs[pd] in updateArgumentValueForBinding.
updateArgumentValueForBinding(argrv, loc, pd, varinfo);
SGF.enterLocalVariableAddressableBufferScope(pd);
return;
}
if (auto *allocStack = dyn_cast<AllocStackInst>(argrv.getValue())) {
allocStack->setArgNo(ArgNo);
allocStack->setIsFromVarDecl();
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(
SGF.getModule()) &&
SGF.F.getLifetime(pd, allocStack->getType()).isLexical()) {
allocStack->setIsLexical();
}
SGF.VarLocs[pd] = SILGenFunction::VarLoc(allocStack,
SILAccessEnforcement::Unknown);
SGF.enterLocalVariableAddressableBufferScope(pd);
return;
}
if (auto *arg = dyn_cast<SILFunctionArgument>(argrv.getValue())) {
if (arg->isNoImplicitCopy()) {
switch (pd->getSpecifier()) {
case swift::ParamSpecifier::Borrowing:
// Shouldn't have any cleanups on this.
assert(!argrv.hasCleanup());
argrv = ManagedValue::forBorrowedAddressRValue(
SGF.B.createCopyableToMoveOnlyWrapperAddr(pd, argrv.getValue()));
break;
case swift::ParamSpecifier::ImplicitlyCopyableConsuming:
case swift::ParamSpecifier::Consuming:
case swift::ParamSpecifier::Default:
case swift::ParamSpecifier::InOut:
case swift::ParamSpecifier::LegacyOwned:
case swift::ParamSpecifier::LegacyShared:
break;
}
}
}
SILValue debugOperand = argrv.getValue();
if (argrv.getType().isMoveOnly()) {
switch (pd->getValueOwnership()) {
case ValueOwnership::Default:
if (pd->isSelfParameter()) {
assert(!isa<MarkUnresolvedNonCopyableValueInst>(argrv.getValue()) &&
"Should not have inserted mark must check inst in EmitBBArgs");
if (!pd->isInOut()) {
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
NoConsumeOrAssign);
}
} else {
if (auto *fArg = dyn_cast<SILFunctionArgument>(argrv.getValue())) {
switch (fArg->getArgumentConvention()) {
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Out:
llvm_unreachable("Should have been handled elsewhere");
case SILArgumentConvention::Indirect_In:
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable);
break;
case SILArgumentConvention::Indirect_In_CXX:
case SILArgumentConvention::Indirect_In_Guaranteed:
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
loc, argrv,
MarkUnresolvedNonCopyableValueInst::CheckKind::
NoConsumeOrAssign);