-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILGenConstructor.cpp
1791 lines (1494 loc) · 68.6 KB
/
SILGenConstructor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SILGenConstructor.cpp - SILGen for constructors ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentSource.h"
#include "Conversion.h"
#include "ExecutorBreadcrumb.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGenFunction.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Generators.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include <map>
using namespace swift;
using namespace Lowering;
namespace {
class LoweredParamsInContextGenerator {
SILGenFunction &SGF;
ArrayRefGenerator<ArrayRef<SILParameterInfo>> loweredParams;
public:
LoweredParamsInContextGenerator(SILGenFunction &SGF)
: SGF(SGF),
loweredParams(SGF.F.getLoweredFunctionType()->getParameters()) {
}
using reference = SILType;
/// Get the original (unsubstituted into context) lowered parameter
/// type information.
SILParameterInfo getOrigInfo() const {
return loweredParams.get();
}
SILType get() const {
return SGF.getSILTypeInContext(loweredParams.get(),
SGF.F.getLoweredFunctionType());
}
SILType claimNext() {
auto param = get();
advance();
return param;
}
bool isFinished() const {
return loweredParams.isFinished();
}
void advance() {
loweredParams.advance();
}
void finish() {
loweredParams.finish();
}
};
} // end anonymous namespace
static ManagedValue emitManagedParameter(SILGenFunction &SGF,
SILValue value, bool isOwned) {
if (isOwned) {
return SGF.emitManagedRValueWithCleanup(value);
} else {
return ManagedValue::forBorrowedRValue(value);
}
}
static SILValue emitConstructorMetatypeArg(SILGenFunction &SGF,
ValueDecl *decl) {
// In addition to the declared arguments, the constructor implicitly takes
// the metatype as its first argument, like a static function.
auto metatypeTy = MetatypeType::get(
decl->getDeclContext()->getSelfInterfaceType());
auto *DC = decl->getInnermostDeclContext();
auto &ctx = SGF.getASTContext();
auto VD =
new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
ctx.getIdentifier("$metatype"), SourceLoc(),
ctx.getIdentifier("$metatype"), DC);
VD->setSpecifier(ParamSpecifier::Default);
VD->setInterfaceType(metatypeTy);
return SGF.F.begin()->createFunctionArgument(
SGF.getLoweredTypeForFunctionArgument(DC->mapTypeIntoContext(metatypeTy)),
VD);
}
// FIXME: Consolidate this with SILGenProlog
static RValue emitImplicitValueConstructorArg(SILGenFunction &SGF,
SILLocation loc,
CanType interfaceType,
DeclContext *DC,
LoweredParamsInContextGenerator &loweredParamTypes,
Initialization *argInit = nullptr) {
auto type = DC->mapTypeIntoContext(interfaceType)->getCanonicalType();
// Restructure tuple arguments.
if (auto tupleIfaceTy = dyn_cast<TupleType>(interfaceType)) {
// If we don't have a context to emit into, but we have a tuple
// that contains pack expansions, create a temporary.
TemporaryInitializationPtr tempInit;
if (!argInit && tupleIfaceTy.containsPackExpansionType()) {
tempInit = SGF.emitTemporary(loc, SGF.getTypeLowering(type));
argInit = tempInit.get();
}
// Split the initialization into element initializations if we have
// one. We should never have to deal with an initialization that
// can't be split here.
assert(!argInit || argInit->canSplitIntoTupleElements());
SmallVector<InitializationPtr> initsBuf;
MutableArrayRef<InitializationPtr> eltInits;
if (argInit) {
eltInits = argInit->splitIntoTupleElements(SGF, loc, type, initsBuf);
assert(eltInits.size() == tupleIfaceTy->getNumElements());
}
RValue tuple(type);
for (auto eltIndex : range(tupleIfaceTy->getNumElements())) {
auto eltIfaceType = tupleIfaceTy.getElementType(eltIndex);
auto eltInit = (argInit ? eltInits[eltIndex].get() : nullptr);
RValue element = emitImplicitValueConstructorArg(SGF, loc, eltIfaceType,
DC, loweredParamTypes,
eltInit);
if (argInit) {
assert(element.isInContext());
} else {
tuple.addElement(std::move(element));
}
}
// If we created a temporary initializer above, finish it and claim
// the managed buffer.
if (tempInit) {
tempInit->finishInitialization(SGF);
auto tupleValue = tempInit->getManagedAddress();
if (tupleValue.getType().isLoadable(SGF.F)) {
tupleValue = SGF.B.createLoadTake(loc, tupleValue);
}
return RValue(SGF, loc, type, tupleValue);
// Otherwise, if we have an emitInto, return forInContext().
} else if (argInit) {
argInit->finishInitialization(SGF);
return RValue::forInContext();
}
return tuple;
}
auto &AC = SGF.getASTContext();
auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
AC.getIdentifier("$implicit_value"),
SourceLoc(),
AC.getIdentifier("$implicit_value"),
DC);
VD->setSpecifier(ParamSpecifier::Default);
VD->setInterfaceType(interfaceType);
auto origParamInfo = loweredParamTypes.getOrigInfo();
auto argType = loweredParamTypes.claimNext();
auto *arg = SGF.F.begin()->createFunctionArgument(argType, VD);
bool argIsConsumed = origParamInfo.isConsumedInCallee();
// If the lowered parameter is a pack expansion, copy/move the pack
// into the initialization, which we assume is there.
if (auto packTy = argType.getAs<SILPackType>()) {
assert(isa<PackExpansionType>(interfaceType));
assert(packTy->getNumElements() == 1);
assert(argInit);
assert(argInit->canPerformPackExpansionInitialization());
auto expansionTy = packTy->getSILElementType(0);
auto openedEnvAndEltTy =
SGF.createOpenedElementValueEnvironment(expansionTy);
auto openedEnv = openedEnvAndEltTy.first;
auto eltTy = openedEnvAndEltTy.second;
auto formalPackType = CanPackType::get(SGF.getASTContext(), {type});
SGF.emitDynamicPackLoop(loc, formalPackType, /*component*/0, openedEnv,
[&](SILValue indexWithinComponent,
SILValue packExpansionIndex,
SILValue packIndex) {
argInit->performPackExpansionInitialization(SGF, loc,
indexWithinComponent,
[&](Initialization *eltInit) {
auto eltAddr =
SGF.B.createPackElementGet(loc, packIndex, arg, eltTy);
ManagedValue eltMV = emitManagedParameter(SGF, eltAddr, argIsConsumed);
eltMV = SGF.B.createLoadIfLoadable(loc, eltMV);
eltInit->copyOrInitValueInto(SGF, loc, eltMV, argIsConsumed);
eltInit->finishInitialization(SGF);
});
});
argInit->finishInitialization(SGF);
return RValue::forInContext();
}
ManagedValue mvArg = emitManagedParameter(SGF, arg, argIsConsumed);
// This can happen if the value is resilient in the calling convention
// but not resilient locally.
if (argType.isAddress()) {
mvArg = SGF.B.createLoadIfLoadable(loc, mvArg);
}
if (argInit) {
argInit->copyOrInitValueInto(SGF, loc, mvArg, argIsConsumed);
argInit->finishInitialization(SGF);
return RValue::forInContext();
}
return RValue(SGF, loc, type, mvArg);
}
/// If the field has a property wrapper for which we will need to call the
/// wrapper type's init(wrappedValue:, ...), call the function that performs
/// that initialization and return the result. Otherwise, return \c arg.
static RValue maybeEmitPropertyWrapperInitFromValue(
SILGenFunction &SGF,
SILLocation loc,
VarDecl *field,
SubstitutionMap subs,
RValue &&arg) {
auto originalProperty = field->getOriginalWrappedProperty();
if (!originalProperty ||
!originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
return std::move(arg);
auto initInfo = originalProperty->getPropertyWrapperInitializerInfo();
if (!initInfo.hasInitFromWrappedValue())
return std::move(arg);
return SGF.emitApplyOfPropertyWrapperBackingInitializer(loc, originalProperty,
subs, std::move(arg));
}
static void
emitApplyOfInitAccessor(SILGenFunction &SGF, SILLocation loc,
AccessorDecl *accessor, SILValue selfValue,
Type selfIfaceTy, SILType selfTy,
RValue &&initialValue) {
SmallVector<SILValue> arguments;
auto emitFieldReference = [&](VarDecl *field, bool forInit = false) {
auto fieldTy =
selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
return SGF.B.createStructElementAddr(loc, selfValue, field,
fieldTy.getAddressType());
};
// First, let's emit all of the indirect results.
for (auto *property : accessor->getInitializedProperties()) {
arguments.push_back(emitFieldReference(property, /*forInit=*/true));
}
// `initialValue`
std::move(initialValue).forwardAll(SGF, arguments);
// And finally, all of the properties in `accesses` list which are
// `inout` arguments.
for (auto *property : accessor->getAccessedProperties()) {
arguments.push_back(emitFieldReference(property));
}
// The `self` metatype.
auto metatypeTy = MetatypeType::get(accessor->mapTypeIntoContext(selfIfaceTy));
arguments.push_back(SGF.B.createMetatype(loc, SGF.getLoweredType(metatypeTy)));
SubstitutionMap subs;
if (auto *env =
accessor->getDeclContext()->getGenericEnvironmentOfContext()) {
subs = env->getForwardingSubstitutionMap();
}
SILValue accessorRef =
SGF.emitGlobalFunctionRef(loc, SGF.getAccessorDeclRef(accessor));
(void)SGF.B.createApply(loc, accessorRef, subs, arguments, ApplyOptions());
}
static SubstitutionMap getSubstitutionsForPropertyInitializer(
DeclContext *dc,
NominalTypeDecl *nominal) {
// We want a substitution list written in terms of the generic
// signature of the type, with replacement archetypes from the
// constructor's context (which might be in an extension of
// the type, which adds additional generic requirements).
if (auto *genericEnv = dc->getGenericEnvironmentOfContext()) {
// Generate a set of substitutions for the initialization function,
// whose generic signature is that of the type context, and whose
// replacement types are the archetypes of the initializer itself.
return SubstitutionMap::get(
nominal->getGenericSignatureOfContext(),
QuerySubstitutionMap{genericEnv->getForwardingSubstitutionMap()},
LookUpConformanceInModule());
}
return SubstitutionMap();
}
static void emitImplicitValueConstructor(SILGenFunction &SGF,
ConstructorDecl *ctor) {
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
if (ctor->requiresUnavailableDeclABICompatibilityStubs())
SGF.emitApplyOfUnavailableCodeReached();
AssertingManualScope functionLevelScope(SGF.Cleanups,
CleanupLocation(Loc));
auto loweredFunctionTy = SGF.F.getLoweredFunctionType();
// FIXME: Handle 'self' along with the other arguments.
assert(loweredFunctionTy->getNumResults() == 1);
auto selfResultInfo = loweredFunctionTy->getResults()[0];
auto *paramList = ctor->getParameters();
auto *selfDecl = ctor->getImplicitSelfDecl();
auto selfIfaceTy = selfDecl->getInterfaceType();
SILType selfTy = SGF.getSILTypeInContext(selfResultInfo, loweredFunctionTy);
auto *decl = selfTy.getStructOrBoundGenericStruct();
assert(decl && "not a struct?!");
std::multimap<VarDecl *, VarDecl *> initializedViaAccessor;
decl->collectPropertiesInitializableByInitAccessors(initializedViaAccessor);
// Emit the indirect return argument, if any.
bool hasInitAccessors = !decl->getInitAccessorProperties().empty();
SILValue resultSlot;
if (selfTy.isAddress()) {
auto &AC = SGF.getASTContext();
auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"),
ctor);
VD->setSpecifier(ParamSpecifier::InOut);
VD->setInterfaceType(selfIfaceTy);
resultSlot = SGF.F.begin()->createFunctionArgument(selfTy, VD);
} else if (hasInitAccessors) {
// Allocate "self" on stack which we are going to use to
// reference/init fields and then load to return.
resultSlot = SGF.emitTemporaryAllocation(Loc, selfTy);
}
LoweredParamsInContextGenerator loweredParams(SGF);
// Emit the elementwise arguments.
SmallVector<RValue, 4> elements;
for (size_t i = 0, size = paramList->size(); i < size; ++i) {
auto ¶m = paramList->get(i);
elements.push_back(
emitImplicitValueConstructorArg(
SGF, Loc, param->getInterfaceType()->getCanonicalType(), ctor,
loweredParams));
}
SGF.AllocatorMetatype = emitConstructorMetatypeArg(SGF, ctor);
(void) loweredParams.claimNext();
loweredParams.finish();
auto subs = getSubstitutionsForPropertyInitializer(decl, decl);
// If we have an indirect return slot, initialize it in-place.
if (resultSlot) {
auto elti = elements.begin(), eltEnd = elements.end();
llvm::SmallPtrSet<VarDecl *, 4> storedProperties;
{
auto properties = decl->getStoredProperties();
storedProperties.insert(properties.begin(), properties.end());
}
for (auto *member : decl->getAllMembers()) {
auto *field = dyn_cast<VarDecl>(member);
if (!field)
continue;
if (initializedViaAccessor.count(field))
continue;
// Handle situations where this stored propery is initialized
// via a call to an init accessor on some other property.
if (auto *initAccessor = field->getAccessor(AccessorKind::Init)) {
if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/true)) {
assert(elti != eltEnd &&
"number of args does not match number of fields");
emitApplyOfInitAccessor(SGF, Loc, initAccessor, resultSlot,
selfIfaceTy, selfTy, std::move(*elti));
++elti;
continue;
}
}
// If this is not one of the stored properties, let's move on.
if (!storedProperties.count(field))
continue;
auto fieldTy =
selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
SILValue slot =
SGF.B.createStructElementAddr(Loc, resultSlot, field,
fieldTy.getAddressType());
if (SGF.getOptions().EnableImportPtrauthFieldFunctionPointers &&
field->getPointerAuthQualifier().isPresent()) {
slot = SGF.B.createBeginAccess(
Loc, slot, SILAccessKind::Init, SILAccessEnforcement::Signed,
/* noNestedConflict */ false, /* fromBuiltin */ false);
}
InitializationPtr init(new KnownAddressInitialization(slot));
// If it's memberwise initialized, do so now.
if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/false)) {
assert(elti != eltEnd &&
"number of args does not match number of fields");
(void)eltEnd;
FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());
RValue arg = std::move(*elti);
// If the stored property has an attached result builder and its
// type is not a function type, the argument is a noescape closure
// that needs to be called.
if (field->getResultBuilderType()) {
if (!field->getValueInterfaceType()
->lookThroughAllOptionalTypes()->is<AnyFunctionType>()) {
auto resultTy = cast<FunctionType>(arg.getType()).getResult();
arg = SGF.emitMonomorphicApply(
Loc, std::move(arg).getAsSingleValue(SGF, Loc), {}, resultTy,
resultTy, ApplyOptions(), std::nullopt, std::nullopt);
}
}
maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
std::move(arg))
.forwardInto(SGF, Loc, init.get());
++elti;
} else {
// TODO: This doesn't correctly take into account destructuring
// pattern bindings on `let`s, for example `let (a, b) = foo()`. In
// cases like that, we ought to evaluate the initializer expression once
// and then do a pattern assignment to the variables in the pattern.
// That case is currently forbidden with an "unsupported" error message
// in Sema.
assert(field->getTypeInContext()->getReferenceStorageReferent()->isEqual(
field->getParentExecutableInitializer()->getType()) &&
"Initialization of field with mismatched type!");
// Cleanup after this initialization.
FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());
// If this is a property wrapper backing storage var that isn't
// memberwise initialized and has an original wrapped value, apply
// the property wrapper backing initializer.
if (auto *wrappedVar = field->getOriginalWrappedProperty()) {
auto initInfo = wrappedVar->getPropertyWrapperInitializerInfo();
auto *placeholder = initInfo.getWrappedValuePlaceholder();
if (placeholder && placeholder->getOriginalWrappedValue()) {
auto arg = SGF.emitRValue(placeholder->getOriginalWrappedValue());
maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
std::move(arg))
.forwardInto(SGF, Loc, init.get());
continue;
}
}
SGF.emitExprInto(field->getParentExecutableInitializer(), init.get());
}
if (SGF.getOptions().EnableImportPtrauthFieldFunctionPointers &&
field->getPointerAuthQualifier().isPresent()) {
SGF.B.createEndAccess(Loc, slot, /* aborted */ false);
}
}
// Load as "take" from our stack allocation and return.
if (!selfTy.isAddress() && hasInitAccessors) {
auto resultValue = SGF.B.emitLoadValueOperation(
Loc, resultSlot, LoadOwnershipQualifier::Take);
SGF.B.createReturn(ImplicitReturnLocation(Loc), resultValue,
std::move(functionLevelScope));
return;
}
SGF.B.createReturn(ImplicitReturnLocation(Loc),
SGF.emitEmptyTuple(Loc), std::move(functionLevelScope));
return;
}
// Otherwise, build a struct value directly from the elements.
SmallVector<SILValue, 4> eltValues;
auto elti = elements.begin(), eltEnd = elements.end();
for (VarDecl *field : decl->getStoredProperties()) {
auto fieldTy =
selfTy.getFieldType(field, SGF.SGM.M, SGF.getTypeExpansionContext());
RValue value;
FullExpr scope(SGF.Cleanups, field->getParentPatternBinding());
// If it's memberwise initialized, do so now.
if (field->isMemberwiseInitialized(/*preferDeclaredProperties=*/false)) {
assert(elti != eltEnd && "number of args does not match number of fields");
(void)eltEnd;
value = std::move(*elti);
++elti;
} else {
// Otherwise, use its initializer.
// TODO: This doesn't correctly take into account destructuring
// pattern bindings on `let`s, for example `let (a, b) = foo()`. In
// cases like that, we ought to evaluate the initializer expression once
// and then do a pattern assignment to the variables in the pattern.
// That case is currently forbidden with an "unsupported" error message
// in Sema.
assert(field->isParentExecutabledInitialized());
Expr *init = field->getParentExecutableInitializer();
// If this is a property wrapper backing storage var that isn't
// memberwise initialized, use the original wrapped value if it exists.
if (auto *wrappedVar = field->getOriginalWrappedProperty()) {
auto initInfo = wrappedVar->getPropertyWrapperInitializerInfo();
auto *placeholder = initInfo.getWrappedValuePlaceholder();
if (placeholder && placeholder->getOriginalWrappedValue()) {
init = placeholder->getOriginalWrappedValue();
}
}
value = SGF.emitRValue(init);
}
// Cleanup after this initialization.
SILValue v = maybeEmitPropertyWrapperInitFromValue(SGF, Loc, field, subs,
std::move(value))
.forwardAsSingleStorageValue(SGF, fieldTy, Loc);
eltValues.push_back(v);
}
SILValue selfValue = SGF.B.createStruct(Loc, selfTy, eltValues);
SGF.B.createReturn(ImplicitReturnLocation(Loc),
selfValue, std::move(functionLevelScope));
return;
}
/// Returns true if the given async constructor will have its
/// required actor hops injected later by definite initialization.
static bool ctorHopsInjectedByDefiniteInit(ConstructorDecl *ctor,
ActorIsolation isolation) {
// must be async, but we can assume that.
assert(ctor->hasAsync());
auto *dc = ctor->getDeclContext();
auto selfClassDecl = dc->getSelfClassDecl();
// must be an actor
if (!selfClassDecl || !selfClassDecl->isAnyActor())
return false;
// must be self-isolated
switch (isolation) {
case ActorIsolation::ActorInstance:
return isolation.getActorInstanceParameter() == 0;
case ActorIsolation::Erased:
llvm_unreachable("constructor cannot have erased isolation");
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
case ActorIsolation::GlobalActor:
case ActorIsolation::CallerIsolationInheriting:
return false;
}
}
bool SILGenFunction::isCtorWithHopsInjectedByDefiniteInit() {
auto declRef = F.getDeclRef();
if (!declRef || !declRef.isConstructor())
return false;
auto ctor = dyn_cast_or_null<ConstructorDecl>(declRef.getDecl());
if (!ctor)
return false;
auto isolation = getActorIsolation(ctor);
return ctorHopsInjectedByDefiniteInit(ctor, isolation);
}
void SILGenFunction::emitValueConstructor(ConstructorDecl *ctor) {
MagicFunctionName = SILGenModule::getMagicFunctionName(ctor);
if (ctor->isMemberwiseInitializer())
return emitImplicitValueConstructor(*this, ctor);
// True if this constructor delegates to a peer constructor with self.init().
bool isDelegating = ctor->getDelegatingOrChainedInitKind().initKind ==
BodyInitKind::Delegating;
if (ctor->requiresUnavailableDeclABICompatibilityStubs())
emitApplyOfUnavailableCodeReached();
// Get the 'self' decl and type.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
auto &lowering = getTypeLowering(selfDecl->getTypeInContext());
// Decide if we need to do extra work to warn on unsafe behavior in pre-Swift-5
// modes.
MarkUninitializedInst::Kind MUIKind;
if (isDelegating) {
MUIKind = MarkUninitializedInst::DelegatingSelf;
} else if (getASTContext().isSwiftVersionAtLeast(5)) {
MUIKind = MarkUninitializedInst::RootSelf;
} else {
auto *dc = ctor->getParent();
if (isa<ExtensionDecl>(dc) &&
dc->getSelfStructDecl()->getParentModule() != dc->getParentModule()) {
MUIKind = MarkUninitializedInst::CrossModuleRootSelf;
} else {
MUIKind = MarkUninitializedInst::RootSelf;
}
}
// Allocate the local variable for 'self'.
emitLocalVariableWithCleanup(selfDecl, MUIKind)->finishInitialization(*this);
ManagedValue selfLV =
maybeEmitValueOfLocalVarDecl(selfDecl, AccessKind::ReadWrite);
assert(selfLV);
// Emit the prolog.
emitBasicProlog(ctor,
ctor->getParameters(),
/*selfParam=*/nullptr,
ctor->getResultInterfaceType(),
ctor->getEffectiveThrownErrorType(),
ctor->getThrowsLoc(),
/*ignored parameters*/ 1);
AllocatorMetatype = emitConstructorMetatypeArg(*this, ctor);
// Make sure we've hopped to the right global actor, if any.
emitConstructorExpectedExecutorProlog();
// Create a basic block to jump to for the implicit 'self' return.
// We won't emit this until after we've emitted the body.
// The epilog takes a void return because the return of 'self' is implicit.
prepareEpilog(ctor, std::nullopt, ctor->getEffectiveThrownErrorType(),
CleanupLocation(ctor));
// If the constructor can fail, set up an alternative epilog for constructor
// failure.
SILBasicBlock *failureExitBB = nullptr;
SILArgument *failureExitArg = nullptr;
auto resultType = ctor->mapTypeIntoContext(ctor->getResultInterfaceType());
auto &resultLowering = getTypeLowering(resultType);
if (ctor->isFailable()) {
SILBasicBlock *failureBB = createBasicBlock(FunctionSection::Postmatter);
// On failure, we'll clean up everything (except self, which should have
// been cleaned up before jumping here) and return nil instead.
SILGenSavedInsertionPoint savedIP(*this, failureBB,
FunctionSection::Postmatter);
failureExitBB = createBasicBlock();
Cleanups.emitCleanupsForReturn(ctor, IsForUnwind);
// Return nil.
if (F.getConventions().hasIndirectSILResults()) {
// Inject 'nil' into the indirect return.
assert(F.getIndirectResults().size() == 1);
B.createInjectEnumAddr(ctor, F.getIndirectResults()[0],
getASTContext().getOptionalNoneDecl());
B.createBranch(ctor, failureExitBB);
B.setInsertionPoint(failureExitBB);
B.createReturn(ctor, emitEmptyTuple(ctor));
} else {
// Pass 'nil' as the return value to the exit BB.
failureExitArg = failureExitBB->createPhiArgument(
resultLowering.getLoweredType(), OwnershipKind::Owned);
SILValue nilResult =
B.createEnum(ctor, SILValue(), getASTContext().getOptionalNoneDecl(),
resultLowering.getLoweredType());
B.createBranch(ctor, failureExitBB, nilResult);
B.setInsertionPoint(failureExitBB);
B.createReturn(ctor, failureExitArg);
}
FailDest = JumpDest(failureBB, Cleanups.getCleanupsDepth(), ctor);
}
// If this is not a delegating constructor, emit member initializers.
if (!isDelegating) {
auto *typeDC = ctor->getDeclContext();
auto *nominal = typeDC->getSelfNominalTypeDecl();
// If we have an empty move only struct, then we will not initialize it with
// any member initializers, breaking SIL. So in that case, just construct a
// SIL struct value and initialize the memory with that.
//
// DISCUSSION: This only happens with noncopyable types since the memory
// lifetime checker doesn't seem to process trivial locations. But empty
// move only structs are non-trivial, so we need to handle this here.
if (nominal->getAttrs().hasAttribute<RawLayoutAttr>()) {
// Raw memory is not directly decomposable, but we still want to mark
// it as initialized. Use a zero initializer.
auto &C = ctor->getASTContext();
auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
B.createBuiltin(ctor, zeroInit->getBaseIdentifier(),
SILType::getEmptyTupleType(C),
SubstitutionMap::get(zeroInit->getInnermostDeclContext()
->getGenericSignatureOfContext(),
{selfDecl->getTypeInContext()},
LookUpConformanceInModule()),
selfLV.getLValueAddress());
} else if (isa<StructDecl>(nominal)
&& lowering.getLoweredType().isMoveOnly()
&& nominal->getStoredProperties().empty()) {
auto *si = B.createStruct(ctor, lowering.getLoweredType(), {});
B.emitStoreValueOperation(ctor, si, selfLV.getLValueAddress(),
StoreOwnershipQualifier::Init);
} else {
emitMemberInitializers(ctor, selfDecl, nominal);
}
}
emitProfilerIncrement(ctor->getTypecheckedBody());
// Emit the constructor body.
emitStmt(ctor->getTypecheckedBody());
// Build a custom epilog block, since the AST representation of the
// constructor decl (which has no self in the return type) doesn't match the
// SIL representation.
SILValue selfValue;
{
SILGenSavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
assert(B.getInsertionBB()->empty() && "Epilog already set up?");
auto cleanupLoc = CleanupLocation(ctor);
if (selfLV.getType().isMoveOnly()) {
selfLV = B.createMarkUnresolvedNonCopyableValueInst(
cleanupLoc, selfLV,
MarkUnresolvedNonCopyableValueInst::CheckKind::
AssignableButNotConsumable);
}
if (!F.getConventions().hasIndirectSILResults()) {
// Otherwise, load and return the final 'self' value.
selfValue = lowering.emitLoad(B, cleanupLoc, selfLV.getValue(),
LoadOwnershipQualifier::Copy);
// Inject the self value into an optional if the constructor is failable.
if (ctor->isFailable()) {
selfValue = B.createEnum(cleanupLoc, selfValue,
getASTContext().getOptionalSomeDecl(),
getLoweredLoadableType(resultType));
}
} else {
// If 'self' is address-only, copy 'self' into the indirect return slot.
assert(F.getConventions().getNumIndirectSILResults() == 1
&& "no indirect return for address-only ctor?!");
// Get the address to which to store the result.
SILValue completeReturnAddress = F.getIndirectResults()[0];
SILValue returnAddress;
if (!ctor->isFailable()) {
// For non-failable initializers, store to the return address directly.
returnAddress = completeReturnAddress;
} else {
// If this is a failable initializer, project out the payload.
returnAddress = B.createInitEnumDataAddr(
cleanupLoc, completeReturnAddress,
getASTContext().getOptionalSomeDecl(), selfLV.getType());
}
// We have to do a non-take copy because someone else may be using the
// box (e.g. someone could have closed over it).
B.createCopyAddr(cleanupLoc, selfLV.getLValueAddress(), returnAddress,
IsNotTake, IsInitialization);
// Inject the enum tag if the result is optional because of failability.
if (ctor->isFailable()) {
// Inject the 'Some' tag.
B.createInjectEnumAddr(cleanupLoc, completeReturnAddress,
getASTContext().getOptionalSomeDecl());
}
}
}
// Finally, emit the epilog and post-matter.
auto returnLoc = emitEpilog(ctor, /*UsesCustomEpilog*/true);
// Finish off the epilog by returning. If this is a failable ctor, then we
// actually jump to the failure epilog to keep the invariant that there is
// only one SIL return instruction per SIL function.
if (B.hasValidInsertionPoint()) {
if (!failureExitBB) {
// If we're not returning self, then return () since we're returning Void.
if (!selfValue) {
CleanupLocation loc(ctor);
loc.markAutoGenerated();
selfValue = emitEmptyTuple(loc);
}
B.createReturn(returnLoc, selfValue);
} else {
if (selfValue)
B.createBranch(returnLoc, failureExitBB, selfValue);
else
B.createBranch(returnLoc, failureExitBB);
}
}
}
void SILGenFunction::emitEnumConstructor(EnumElementDecl *element) {
Type enumIfaceTy = element->getParentEnum()->getDeclaredInterfaceType();
Type enumTy = F.mapTypeIntoContext(enumIfaceTy);
auto &enumTI =
SGM.Types.getTypeLowering(enumTy, TypeExpansionContext::minimal());
if (element->requiresUnavailableDeclABICompatibilityStubs())
emitApplyOfUnavailableCodeReached();
RegularLocation Loc(element);
CleanupLocation CleanupLoc(element);
Loc.markAutoGenerated();
// Emit the indirect return slot.
std::unique_ptr<Initialization> dest;
if (enumTI.isAddressOnly() && silConv.useLoweredAddresses()) {
auto &AC = getASTContext();
auto VD = new (AC) ParamDecl(SourceLoc(), SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"),
element->getDeclContext());
VD->setSpecifier(ParamSpecifier::InOut);
VD->setInterfaceType(enumIfaceTy);
auto resultSlot =
F.begin()->createFunctionArgument(enumTI.getLoweredType(), VD);
dest = std::unique_ptr<Initialization>(
new KnownAddressInitialization(resultSlot));
}
Scope scope(Cleanups, CleanupLoc);
LoweredParamsInContextGenerator loweredParams(*this);
// Emit the exploded constructor argument.
SmallVector<ArgumentSource, 2> payloads;
if (element->hasAssociatedValues()) {
auto elementFnTy =
cast<AnyFunctionType>(
cast<AnyFunctionType>(element->getInterfaceType()->getCanonicalType())
.getResult());
auto elementParams = elementFnTy.getParams();
payloads.reserve(elementParams.size());
for (auto param: elementParams) {
auto paramType = param.getParameterType();
RValue arg = emitImplicitValueConstructorArg(*this, Loc, paramType,
element, loweredParams);
payloads.emplace_back(Loc, std::move(arg));
}
}
// Emit the metatype argument.
AllocatorMetatype = emitConstructorMetatypeArg(*this, element);
(void) loweredParams.claimNext();
loweredParams.finish();
// If possible, emit the enum directly into the indirect return.
SGFContext C = (dest ? SGFContext(dest.get()) : SGFContext());
ManagedValue mv = emitInjectEnum(Loc, payloads,
enumTI.getLoweredType(),
element, C);
// Return the enum.
auto ReturnLoc = ImplicitReturnLocation(Loc);
if (dest) {
if (!mv.isInContext()) {
dest->copyOrInitValueInto(*this, Loc, mv, /*isInit*/ true);
dest->finishInitialization(*this);
}
scope.pop();
B.createReturn(ReturnLoc, emitEmptyTuple(CleanupLocation(Loc)));
} else {
assert(enumTI.isLoadable() || !silConv.useLoweredAddresses());
SILValue result = mv.ensurePlusOne(*this, ReturnLoc).forward(*this);
scope.pop();
B.createReturn(ReturnLoc, result);
}
}
void SILGenFunction::emitClassConstructorAllocator(ConstructorDecl *ctor) {
assert(!ctor->isFactoryInit() && "factories should not be emitted here");
// Emit the prolog. Since we're just going to forward our args directly
// to the initializer, don't allocate local variables for them.
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
// Forward the constructor arguments.
// FIXME: Handle 'self' along with the other body patterns.
SmallVector<SILValue, 8> args;
// If the function we're calling has an indirect error result, create an
// argument for it.
if (F.getConventions().hasIndirectSILErrorResults()) {
assert(F.getConventions().getNumIndirectSILErrorResults() == 1);
auto paramTy = F.mapTypeIntoContext(
F.getConventions().getSILErrorType(getTypeExpansionContext()));
auto inContextParamTy = F.getLoweredType(paramTy.getASTType())
.getCategoryType(paramTy.getCategory());
SILArgument *arg = F.begin()->createFunctionArgument(inContextParamTy);
IndirectErrorResult = arg;
args.push_back(arg);
}
bindParametersForForwarding(ctor->getParameters(), args);
if (ctor->requiresUnavailableDeclABICompatibilityStubs())
emitApplyOfUnavailableCodeReached();
AllocatorMetatype = emitConstructorMetatypeArg(*this, ctor);
SILValue selfMetaValue = AllocatorMetatype;
// Allocate the "self" value.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
SILType selfTy = getLoweredType(selfDecl->getTypeInContext());
assert(selfTy.hasReferenceSemantics() &&
"can't emit a value type ctor here");
// Use alloc_ref to allocate the object.
// TODO: allow custom allocation?
// FIXME: should have a cleanup in case of exception
auto selfClassDecl = ctor->getDeclContext()->getSelfClassDecl();
SILValue selfValue;
// Allocate the 'self' value.
bool useObjCAllocation = usesObjCAllocator(selfClassDecl);
if (ctor->hasClangNode() ||
ctor->shouldUseObjCDispatch() ||
ctor->isConvenienceInit()) {
assert(ctor->hasClangNode() || ctor->isObjC());
// For an allocator thunk synthesized for an @objc convenience initializer
// or imported Objective-C init method, allocate using the metatype.
SILValue allocArg = selfMetaValue;
// When using Objective-C allocation, convert the metatype
// argument to an Objective-C metatype.
if (useObjCAllocation) {
auto metaTy = allocArg->getType().castTo<MetatypeType>();
metaTy = CanMetatypeType::get(metaTy.getInstanceType(),
MetatypeRepresentation::ObjC);
allocArg = B.createThickToObjCMetatype(Loc, allocArg,
getLoweredType(metaTy));
}
selfValue = B.createAllocRefDynamic(Loc, allocArg, selfTy,